BigDecimal
在《Effective Java》这本书中也提到这个原则,float和double只能用来做科学计算或者是工程计算,在商业计算中我们要用java.math.BigDecimal。BigDecimal一共有4个够造方法,我们不关心用BigInteger来够造的那两个,那么还有两个,它们是:
BigDecimal(double val)
Translates a double into a BigDecimal.
BigDecimal(String val)
Translates the String repre sentation of a BigDecimal into a BigDecimal.
上面的API简要描述相当的明确,而且通常情况下,上面的那一个使用起来要方便一些。我们可能想都不想就用上了,会有什么问题呢?等到出了问题的时候,才发现上面哪个够造方法的详细说明中有这么一段:
Note: the results of this constructor can be somewhat unpredictable. One might assume that new BigDecimal(.1) is exactly equal to .1, but it is actually equal to .1000000000000000055511151231257827021181583404541015625. This is so because .1 cannot be represented exactly as a double (or, for that matter, as a binary fraction of any finite length). Thus, the long value that is being passed in to the constructor is not exactly equal to .1, appearances nonwithstanding.
The (String) constructor, on the other hand, is perfectly predictable: new BigDecimal(".1") is exactly equal to .1, as one would expect. Therefore, it is generally recommended that the (String) constructor be used in preference to this one.
原来我们如果需要精确计算,非要用String来够造BigDecimal不可!在《Effective Java》一书中的例子是用String来够造BigDecimal的,但是书上却没有强调这一点,这也许是一个小小的失误吧。
解决方案
现在我们已经可以解决这个问题了,原则是使用BigDecimal并且一定要用String来够造。
但是想像一下吧,如果我们要做一个加法运算,需要先将两个浮点数转为String,然后够造成BigDecimal,在其中一个上调用add方法,传入另一个作为参数,然后把运算的结果(BigDecimal)再转换为浮点数。你能够忍受这么烦琐的过程吗?下面我们提供一个工具类Arith来简化操作。它提供以下静态方法,包括加减乘除和四舍五入:
public static double add(double v1,double v2)
public static double sub(double v1,double v2)
public static double mul(double v1,double v2)
public static double div(double v1,double v2)
public static double div(double v1,double v2,int scale)
public static double round(double v,int scale)
附录
源文件Arith.java:
import java.math.BigDecimal;
public class Arith{
//默认除法运算精度
private static final int DEF_DIV_SCALE = 10;
//这个类不能实例化
private Arith(){
}
public static double add(double v1,double v2){
BigDecimal b1 = new BigDecimal(Double.toString(v1));
BigDecimal b2 = new BigDecimal(Double.toString(v2));
return b1.add(b2).doubleValue();
}
public static double sub(double v1,double v2){
BigDecimal b1 = new BigDecimal(Double.toString(v1));
BigDecimal b2 = new BigDecimal(Double.toString(v2));
return b1.subtract(b2).doubleValue();
}
public static double mul(double v1,double v2){
BigDecimal b1 = new BigDecimal(Double.toString(v1));
BigDecimal b2 = new BigDecimal(Double.toString(v2));
return b1.multiply(b2).doubleValue();
}
public static double div(double v1,double v2){
return div(v1,v2,DEF_DIV_SCALE);
}
public static double div(double v1,double v2,int scale){
if(scale<0){
throw new IllegalArgumentException(
"The scale must be a positive integer or zero");
}
BigDecimal b1 = new BigDecimal(Double.toString(v1));
BigDecimal b2 = new BigDecimal(Double.toString(v2));
return b1.divide(b2,scale,BigDecimal.ROUND_HALF_UP).doubleValue();
}
public static double round(double v,int scale){
if(scale<0){
throw new IllegalArgumentException(
"The scale must be a positive integer or zero");
}
BigDecimal b = new BigDecimal(Double.toString(v));
BigDecimal one = new BigDecimal("1");
return b.divide(one,scale,BigDecimal.ROUND_HALF_UP).doubleValue();
}
};
针对double d = 2.4;
System.out.println(d);//输出2.4,却不是2.3999999999999999呢?
翻阅了一些资料,当单个输出double 型值时,可以正确的用十进制显示,具体为什么,俺也似懂非懂,但进行浮点计算,浮点计算是指浮点数参与的运算,這種运算通常伴随着因为无法精确表示而进行的近似或舍入。也许和Double.toString方法的 FloatingDecimal(d).toJavaFormatString()有关系
猜测大概是2.3999999999999999超出了输出的精度所以被截取的原因吧