黑马程序员技术交流社区

标题: Android应用层View绘制流程与源码分析 [打印本页]

作者: Android_Robot    时间: 2016-10-6 17:38
标题: Android应用层View绘制流程与源码分析
涨薪机密——潮流新技术、新框架资源以后不定期更新,
   

说到Activity中界面加载显示的基本流程原理,最终分析结果就是下面的关系:

看见没有,如上图中id为content的内容就是整个View树的结构,所以对每个具体View对象的操作,其实就是个递归的实现。

Android中的任何一个布局、任何一个控件其实都是直接或间接继承自View实现的,当然也包括我们后面一步一步引出的自定义控件也不例外,所以说这些View应该都具有相同的绘制流程与机制才能显示到屏幕上(因为他们都具备相同的父类View,可能每个控件的具体绘制逻辑有差异,但是主流程都是一样的)。经过总结发现每一个View的绘制过程都必须经历三个最主要的过程,也就是measure、layout和draw。

既然一个View的绘制主要流程是这三步,那一定有一个开始地方呀,就像一个类从main函数执行一样呀。对于View的绘制开始调运地方这里先给出结论,本文后面会反过来分析原因的,先往下看就行。具体结论如下:

整个View树的绘图流程是在ViewRootImpl类的performTraversals()方法(这个方法巨长)开始的,该函数做的执行过程主要是根据之前设置的状态,判断是否重新计算视图大小(measure)、是否重新放置视图的位置(layout)、以及是否重绘 (draw),其核心也就是通过判断来选择顺序执行这三个方法中的哪个,如下:

[Java] 纯文本查看 复制代码
private void performTraversals() {
        ......
        //最外层的根视图的widthMeasureSpec和heightMeasureSpec由来
        //lp.width和lp.height在创建ViewGroup实例时等于MATCH_PARENT
        int childWidthMeasureSpec = getRootMeasureSpec(mWidth, lp.width);
        int childHeightMeasureSpec = getRootMeasureSpec(mHeight, lp.height);
        ......
        mView.measure(childWidthMeasureSpec, childHeightMeasureSpec);
        ......
        mView.layout(0, 0, mView.getMeasuredWidth(), mView.getMeasuredHeight());
        ......
        mView.draw(canvas);
        ......
    }

[Java] 纯文本查看 复制代码
/**
     * Figures out the measure spec for the root view in a window based on it's
     * layout params.
     *
     * @param windowSize
     *            The available width or height of the window
     *
     * @param rootDimension
     *            The layout params for one dimension (width or height) of the
     *            window.
     *
     * @return The measure spec to use to measure the root view.
     */
    private static int getRootMeasureSpec(int windowSize, int rootDimension) {
        int measureSpec;
        switch (rootDimension) {

        case ViewGroup.LayoutParams.MATCH_PARENT:
            // Window can't resize. Force root view to be windowSize.
            measureSpec = MeasureSpec.makeMeasureSpec(windowSize, MeasureSpec.EXACTLY);
            break;
        ......
        }
        return measureSpec;
    }

可以看见这个方法的注释说是用来测Root View的。上面传入参数后这个函数走的是MATCH_PARENT,使用MeasureSpec.makeMeasureSpec方法组装一个MeasureSpec,MeasureSpec的specMode等于EXACTLY,specSize等于windowSize,也就是为何根视图总是全屏的原因。

其中的mView就是View对象。如下就是整个流程的大致流程图:

如下我们就依据View绘制的这三个主要流程进行详细剖析(基于Android5.1.1 API 22源码进行分析)。

2 View绘制流程第一步:递归measure源码分析

整个View树的源码measure流程图如下:

2-1 measure源码分析

先看下View的measure方法源码,如下:

[Java] 纯文本查看 复制代码
/**
     * <p>
     * This is called to find out how big a view should be. The parent
     * supplies constraint information in the width and height parameters.
     * </p>
     *
     * <p>
     * The actual measurement work of a view is performed in
     * {@link #onMeasure(int, int)}, called by this method. Therefore, only
     * {@link #onMeasure(int, int)} can and must be overridden by subclasses.
     * </p>
     *
     *
     * @param widthMeasureSpec Horizontal space requirements as imposed by the
     *        parent
     * @param heightMeasureSpec Vertical space requirements as imposed by the
     *        parent
     *
     * @see #onMeasure(int, int)
     */
     //final方法,子类不可重写
    public final void measure(int widthMeasureSpec, int heightMeasureSpec) {
        ......
        //回调onMeasure()方法
        onMeasure(widthMeasureSpec, heightMeasureSpec);
        ......
    }

看见注释信息没有,他告诉你了很多重要信息。为整个View树计算实际的大小,然后设置实际的高和宽,每个View控件的实际宽高都是由父视图和自身决定的。实际的测量是在onMeasure方法进行,所以在View的子类需要重写onMeasure方法,这是因为measure方法是final的,不允许重载,所以View子类只能通过重载onMeasure来实现自己的测量逻辑。

这个方法的两个参数都是父View传递过来的,也就是代表了父view的规格。他由两部分组成,高2位表示MODE,定义在MeasureSpec类(View的内部类)中,有三种类型,MeasureSpec.EXACTLY表示确定大小, MeasureSpec.AT_MOST表示最大大小, MeasureSpec.UNSPECIFIED不确定。低30位表示size,也就是父View的大小。对于系统Window类的DecorVIew对象Mode一般都为MeasureSpec.EXACTLY ,而size分别对应屏幕宽高。对于子View来说大小是由父View和子View共同决定的。

在这里可以看出measure方法最终回调了View的onMeasure方法,我们来看下View的onMeasure源码,如下:

[Java] 纯文本查看 复制代码
/**
     * <p>
     * Measure the view and its content to determine the measured width and the
     * measured height. This method is invoked by {@link #measure(int, int)} and
     * should be overriden by subclasses to provide accurate and efficient
     * measurement of their contents.
     * </p>
     *
     * <p>
     * <strong>CONTRACT:</strong> When overriding this method, you
     * <em>must</em> call {@link #setMeasuredDimension(int, int)} to store the
     * measured width and height of this view. Failure to do so will trigger an
     * <code>IllegalStateException</code>, thrown by
     * {@link #measure(int, int)}. Calling the superclass'
     * {@link #onMeasure(int, int)} is a valid use.
     * </p>
     *
     * <p>
     * The base class implementation of measure defaults to the background size,
     * unless a larger size is allowed by the MeasureSpec. Subclasses should
     * override {@link #onMeasure(int, int)} to provide better measurements of
     * their content.
     * </p>
     *
     * <p>
     * If this method is overridden, it is the subclass's responsibility to make
     * sure the measured height and width are at least the view's minimum height
     * and width ({@link #getSuggestedMinimumHeight()} and
     * {@link #getSuggestedMinimumWidth()}).
     * </p>
     *
     * @param widthMeasureSpec horizontal space requirements as imposed by the parent.
     *                         The requirements are encoded with
     *                         {@link android.view.View.MeasureSpec}.
     * @param heightMeasureSpec vertical space requirements as imposed by the parent.
     *                         The requirements are encoded with
     *                         {@link android.view.View.MeasureSpec}.
     *
     * @see #getMeasuredWidth()
     * @see #getMeasuredHeight()
     * @see #setMeasuredDimension(int, int)
     * @see #getSuggestedMinimumHeight()
     * @see #getSuggestedMinimumWidth()
     * @see android.view.View.MeasureSpec#getMode(int)
     * @see android.view.View.MeasureSpec#getSize(int)
     */
     //View的onMeasure默认实现方法
    protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
        setMeasuredDimension(getDefaultSize(getSuggestedMinimumWidth(), widthMeasureSpec),
                getDefaultSize(getSuggestedMinimumHeight(), heightMeasureSpec));
    }

看见没有,其实注释已经很详细了(自定义View重写该方法的指导操作注释都有说明),不做过多解释。

对于非ViewGroup的View而言,通过调用上面默认的onMeasure即可完成View的测量,当然你也可以重载onMeasure并调用setMeasuredDimension来设置任意大小的布局,但一般不这么做,因为这种做法不太好,至于为何不好,后面分析完你就明白了。

我们可以看见onMeasure默认的实现仅仅调用了setMeasuredDimension,setMeasuredDimension函数是一个很关键的函数,它对View的成员变量mMeasuredWidth和mMeasuredHeight变量赋值,measure的主要目的就是对View树中的每个View的mMeasuredWidth和mMeasuredHeight进行赋值,所以一旦这两个变量被赋值意味着该View的测量工作结束。既然这样那我们就看看设置的默认尺寸大小吧,可以看见setMeasuredDimension传入的参数都是通过getDefaultSize返回的,所以再来看下getDefaultSize方法源码,如下:

[Java] 纯文本查看 复制代码
public static int getDefaultSize(int size, int measureSpec) {
        int result = size;
        //通过MeasureSpec解析获取mode与size
        int specMode = MeasureSpec.getMode(measureSpec);
        int specSize = MeasureSpec.getSize(measureSpec);

        switch (specMode) {
        case MeasureSpec.UNSPECIFIED:
            result = size;
            break;
        case MeasureSpec.AT_MOST:
        case MeasureSpec.EXACTLY:
            result = specSize;
            break;
        }
        return result;
    }

看见没有,如果specMode等于AT_MOST或EXACTLY就返回specSize,这就是系统默认的规格。

回过头继续看上面onMeasure方法,其中getDefaultSize参数的widthMeasureSpec和heightMeasureSpec都是由父View传递进来的。getSuggestedMinimumWidth与getSuggestedMinimumHeight都是View的方法,具体如下:

[Java] 纯文本查看 复制代码
protected int getSuggestedMinimumWidth() {
        return (mBackground == null) ? mMinWidth : max(mMinWidth, mBackground.getMinimumWidth());
    }

    protected int getSuggestedMinimumHeight() {
        return (mBackground == null) ? mMinHeight : max(mMinHeight, mBackground.getMinimumHeight());

    }

看见没有,建议的最小宽度和高度都是由View的Background尺寸与通过设置View的miniXXX属性共同决定的。

到此一次最基础的元素View的measure过程就完成了。上面说了View实际是嵌套的,而且measure是递归传递的,所以每个View都需要measure。实际能够嵌套的View一般都是ViewGroup的子类,所以在ViewGroup中定义了measureChildren, measureChild, measureChildWithMargins方法来对子视图进行测量,measureChildren内部实质只是循环调用measureChild,measureChild和measureChildWithMargins的区别就是是否把margin和padding也作为子视图的大小。如下我们以ViewGroup中稍微复杂的measureChildWithMargins方法来分析:

[AppleScript] 纯文本查看 复制代码
/**
     * Ask one of the children of this view to measure itself, taking into
     * account both the MeasureSpec requirements for this view and its padding
     * and margins. The child must have MarginLayoutParams The heavy lifting is
     * done in getChildMeasureSpec.
     *
     * @param child The child to measure
     * @param parentWidthMeasureSpec The width requirements for this view
     * @param widthUsed Extra space that has been used up by the parent
     *        horizontally (possibly by other children of the parent)
     * @param parentHeightMeasureSpec The height requirements for this view
     * @param heightUsed Extra space that has been used up by the parent
     *        vertically (possibly by other children of the parent)
     */
    protected void measureChildWithMargins(View child,
            int parentWidthMeasureSpec, int widthUsed,
            int parentHeightMeasureSpec, int heightUsed) {
        //获取子视图的LayoutParams
        final MarginLayoutParams lp = (MarginLayoutParams) child.getLayoutParams();
        //调整MeasureSpec
        //通过这两个参数以及子视图本身的LayoutParams来共同决定子视图的测量规格
        final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec,
                mPaddingLeft + mPaddingRight + lp.leftMargin + lp.rightMargin
                        + widthUsed, lp.width);
        final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec,
                mPaddingTop + mPaddingBottom + lp.topMargin + lp.bottomMargin
                        + heightUsed, lp.height);
        //调运子View的measure方法,子View的measure中会回调子View的onMeasure方法
        child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
    }

关于该方法的参数等说明注释已经描述的够清楚了。该方法就是对父视图提供的measureSpec参数结合自身的LayoutParams参数进行了调整,然后再来调用child.measure()方法,具体通过方法getChildMeasureSpec来进行参数调整。所以我们继续看下getChildMeasureSpec方法代码,如下:

[Java] 纯文本查看 复制代码
 public static int getChildMeasureSpec(int spec, int padding, int childDimension) {
        //获取当前Parent View的Mode和Size
        int specMode = MeasureSpec.getMode(spec);
        int specSize = MeasureSpec.getSize(spec);
        //获取Parent size与padding差值(也就是Parent剩余大小),若差值小于0直接返回0
        int size = Math.max(0, specSize - padding);
        //定义返回值存储变量
        int resultSize = 0;
        int resultMode = 0;
        //依据当前Parent的Mode进行switch分支逻辑
        switch (specMode) {
        // Parent has imposed an exact size on us
        //默认Root View的Mode就是EXACTLY
        case MeasureSpec.EXACTLY:
            if (childDimension >= 0) {
                //如果child的layout_wOrh属性在xml或者java中给予具体大于等于0的数值
                //设置child的size为真实layout_wOrh属性值,mode为EXACTLY
                resultSize = childDimension;
                resultMode = MeasureSpec.EXACTLY;
            } else if (childDimension == LayoutParams.MATCH_PARENT) {
                //如果child的layout_wOrh属性在xml或者java中给予MATCH_PARENT
                // Child wants to be our size. So be it.
                //设置child的size为size,mode为EXACTLY
                resultSize = size;
                resultMode = MeasureSpec.EXACTLY;
            } else if (childDimension == LayoutParams.WRAP_CONTENT) {
                //如果child的layout_wOrh属性在xml或者java中给予WRAP_CONTENT
                //设置child的size为size,mode为AT_MOST
                // Child wants to determine its own size. It can't be
                // bigger than us.
                resultSize = size;
                resultMode = MeasureSpec.AT_MOST;
            }
            break;
        ......
        //其他Mode分支类似
        }
        //将mode与size通过MeasureSpec方法整合为32位整数返回
        return MeasureSpec.makeMeasureSpec(resultSize, resultMode);
    }

可以看见,getChildMeasureSpec的逻辑是通过其父View提供的MeasureSpec参数得到specMode和specSize,然后根据计算出来的specMode以及子View的childDimension(layout_width或layout_height)来计算自身的measureSpec,如果其本身包含子视图,则计算出来的measureSpec将作为调用其子视图measure函数的参数,同时也作为自身调用setMeasuredDimension的参数,如果其不包含子视图则默认情况下最终会调用onMeasure的默认实现,并最终调用到setMeasuredDimension。

所以可以看见onMeasure的参数其实就是这么计算出来的。同时从上面的分析可以看出来,最终决定View的measure大小是View的setMeasuredDimension方法,所以我们可以通过setMeasuredDimension设定死值来设置View的mMeasuredWidth和mMeasuredHeight的大小,但是一个好的自定义View应该会根据子视图的measureSpec来设置mMeasuredWidth和mMeasuredHeight的大小,这样的灵活性更大,所以这也就是上面分析onMeasure时说View的onMeasure最好不要重写死值的原因。

可以看见当通过setMeasuredDimension方法最终设置完成View的measure之后View的mMeasuredWidth和mMeasuredHeight成员才会有具体的数值,所以如果我们自定义的View或者使用现成的View想通过getMeasuredWidth()和getMeasuredHeight()方法来获取View测量的宽高,必须保证这两个方法在onMeasure流程之后被调用才能返回有效值。

至此整个View绘制流程的第一步就分析完成了,可以看见,相对来说还是比较复杂的,接下来进行小结。

2-2 measure原理总结

通过上面分析可以看出measure过程主要就是从顶层父View向子View递归调用view.measure方法(measure中又回调onMeasure方法)的过程。具体measure核心主要有如下几点:

3 View绘制流程第二步:递归layout源码分析

在上面的背景介绍就说过,当ViewRootImpl的performTraversals中measure执行完成以后会接着执行mView.layout,具体如下:

[Java] 纯文本查看 复制代码
private void performTraversals() {
    ......
    mView.layout(0, 0, mView.getMeasuredWidth(), mView.getMeasuredHeight());
    ......
}

可以看见layout方法接收四个参数,这四个参数分别代表相对Parent的左、上、右、下坐标。而且还可以看见左上都为0,右下分别为上面刚刚测量的width和height。

至此又回归到View的layout(int l, int t, int r, int b)方法中去实现具体逻辑了,所以接下来我们开始分析View的layout过程。

整个View树的layout递归流程图如下:

3-1 layout源码分析

layout既然也是递归结构,那我们先看下ViewGroup的layout方法,如下:

[Java] 纯文本查看 复制代码
 @Override
    public final void layout(int l, int t, int r, int b) {
        ......
        super.layout(l, t, r, b);
        ......
    }

ViewGroup的layout方法实质还是调运了View父类的layout方法,所以我们看下View的layout源码,如下:

[Java] 纯文本查看 复制代码
public void layout(int l, int t, int r, int b) {
        ......
        //实质都是调用setFrame方法把参数分别赋值给mLeft、mTop、mRight和mBottom这几个变量
        //判断View的位置是否发生过变化,以确定有没有必要对当前的View进行重新layout
        boolean changed = isLayoutModeOptical(mParent) ?
                setOpticalFrame(l, t, r, b) : setFrame(l, t, r, b);
        //需要重新layout
        if (changed || (mPrivateFlags & PFLAG_LAYOUT_REQUIRED) == PFLAG_LAYOUT_REQUIRED) {
            //回调onLayout
            onLayout(changed, l, t, r, b);
            ......
        }
        ......
    }

类似measure过程,lauout调运了onLayout方法。

对比上面View的layout和ViewGroup的layout方法可以发现,View的layout方法是可以在子类重写的,而ViewGroup的layout是不能在子类重写的,言外之意就是说ViewGroup中只能通过重写onLayout方法。那我们接下来看下ViewGroup的onLayout方法,如下:

[Java] 纯文本查看 复制代码
@Override
    protected abstract void onLayout(boolean changed,
            int l, int t, int r, int b);

ViewGroup的onLayout()方法竟然是一个抽象方法,这就是说所有ViewGroup的子类都必须重写这个方法。所以在自定义ViewGroup控件中,onLayout配合onMeasure方法一起使用可以实现自定义View的复杂布局。自定义View首先调用onMeasure进行测量,然后调用onLayout方法动态获取子View和子View的测量大小,然后进行layout布局。重载onLayout的目的就是安排其children在父View的具体位置,重载onLayout通常做法就是写一个for循环调用每一个子视图的layout(l, t, r, b)函数,传入不同的参数l, t, r, b来确定每个子视图在父视图中的显示位置。

再看下View的onLayout方法源码,如下:

[Java] 纯文本查看 复制代码
 protected void onLayout(boolean changed, int left, int top, int right, int bottom) {
    }

是一个空方法,没啥可看的。

既然这样那我们只能分析一个现有的继承ViewGroup的控件了,就拿LinearLayout来说吧,如下是LinearLayout中onLayout的一些代码:

[Java] 纯文本查看 复制代码
public class LinearLayout extends ViewGroup {
    @Override
    protected void onLayout(boolean changed, int l, int t, int r, int b) {
        if (mOrientation == VERTICAL) {
            layoutVertical(l, t, r, b);
        } else {
            layoutHorizontal(l, t, r, b);
        }
    }
}

LinearLayout的layout过程是分Vertical和Horizontal的,这个就是xml布局的orientation属性设置的,我们为例说明ViewGroup的onLayout重写一般步骤就拿这里的VERTICAL模式来解释吧,如下是layoutVertical方法源码:

[Java] 纯文本查看 复制代码
void layoutVertical(int left, int top, int right, int bottom) {
        final int paddingLeft = mPaddingLeft;

        int childTop;
        int childLeft;

        // Where right end of child should go
        //计算父窗口推荐的子View宽度
        final int width = right - left;
        //计算父窗口推荐的子View右侧位置
        int childRight = width - mPaddingRight;

        // Space available for child
        //child可使用空间大小
        int childSpace = width - paddingLeft - mPaddingRight;
        //通过ViewGroup的getChildCount方法获取ViewGroup的子View个数
        final int count = getVirtualChildCount();
        //获取Gravity属性设置
        final int majorGravity = mGravity & Gravity.VERTICAL_GRAVITY_MASK;
        final int minorGravity = mGravity & Gravity.RELATIVE_HORIZONTAL_GRAVITY_MASK;
        //依据majorGravity计算childTop的位置值
        switch (majorGravity) {
           case Gravity.BOTTOM:
               // mTotalLength contains the padding already
               childTop = mPaddingTop + bottom - top - mTotalLength;
               break;

               // mTotalLength contains the padding already
           case Gravity.CENTER_VERTICAL:
               childTop = mPaddingTop + (bottom - top - mTotalLength) / 2;
               break;

           case Gravity.TOP:
           default:
               childTop = mPaddingTop;
               break;
        }
        //重点!!!开始遍历
        for (int i = 0; i < count; i++) {
            final View child = getVirtualChildAt(i);
            if (child == null) {
                childTop += measureNullChild(i);
            } else if (child.getVisibility() != GONE) {
                //LinearLayout中其子视图显示的宽和高由measure过程来决定的,因此measure过程的意义就是为layout过程提供视图显示范围的参考值
                final int childWidth = child.getMeasuredWidth();
                final int childHeight = child.getMeasuredHeight();
                //获取子View的LayoutParams
                final LinearLayout.LayoutParams lp =
                        (LinearLayout.LayoutParams) child.getLayoutParams();

                int gravity = lp.gravity;
                if (gravity < 0) {
                    gravity = minorGravity;
                }
                final int layoutDirection = getLayoutDirection();
                final int absoluteGravity = Gravity.getAbsoluteGravity(gravity, layoutDirection);
                //依据不同的absoluteGravity计算childLeft位置
                switch (absoluteGravity & Gravity.HORIZONTAL_GRAVITY_MASK) {
                    case Gravity.CENTER_HORIZONTAL:
                        childLeft = paddingLeft + ((childSpace - childWidth) / 2)
                                + lp.leftMargin - lp.rightMargin;
                        break;

                    case Gravity.RIGHT:
                        childLeft = childRight - childWidth - lp.rightMargin;
                        break;

                    case Gravity.LEFT:
                    default:
                        childLeft = paddingLeft + lp.leftMargin;
                        break;
                }

                if (hasDividerBeforeChildAt(i)) {
                    childTop += mDividerHeight;
                }

                childTop += lp.topMargin;
                //通过垂直排列计算调运child的layout设置child的位置
                setChildFrame(child, childLeft, childTop + getLocationOffset(child),
                        childWidth, childHeight);
                childTop += childHeight + lp.bottomMargin + getNextLocationOffset(child);

                i += getChildrenSkipCount(child, i);
            }
        }
    }

从上面分析的ViewGroup子类LinearLayout的onLayout实现代码可以看出,一般情况下layout过程会参考measure过程中计算得到的mMeasuredWidth和mMeasuredHeight来安排子View在父View中显示的位置,但这不是必须的,measure过程得到的结果可能完全没有实际用处,特别是对于一些自定义的ViewGroup,其子View的个数、位置和大小都是固定的,这时候我们可以忽略整个measure过程,只在layout函数中传入的4个参数来安排每个子View的具体位置。

到这里就不得不提getWidth()、getHeight()和getMeasuredWidth()、getMeasuredHeight()这两对方法之间的区别(上面分析measure过程已经说过getMeasuredWidth()、getMeasuredHeight()必须在onMeasure之后使用才有效)。可以看出来getWidth()与getHeight()方法必须在layout(int l, int t, int r, int b)执行之后才有效。那我们看下View源码中这些方法的实现吧,如下:

[Java] 纯文本查看 复制代码
public final int getMeasuredWidth() {
        return mMeasuredWidth & MEASURED_SIZE_MASK;
    }

    public final int getMeasuredHeight() {
        return mMeasuredHeight & MEASURED_SIZE_MASK;
    }

    public final int getWidth() {
        return mRight - mLeft;
    }

    public final int getHeight() {
        return mBottom - mTop;
    }

    public final int getLeft() {
        return mLeft;
    }

    public final int getRight() {
        return mRight;
    }

    public final int getTop() {
        return mTop;
    }

    public final int getBottom() {
        return mBottom;
    }

这也解释了为什么有些情况下getWidth()和getMeasuredWidth()以及getHeight()和getMeasuredHeight()会得到不同的值,所以这里不做过多解释。

到此整个View的layout过程分析就算结束了,接下来进行一些总结工作。

3-2 layout原理总结

整个layout过程比较容易理解,从上面分析可以看出layout也是从顶层父View向子View的递归调用view.layout方法的过程,即父View根据上一步measure子View所得到的布局大小和布局参数,将子View放在合适的位置上。具体layout核心主要有以下几点:

4 View绘制流程第三步:递归draw源码分析

在上面的背景介绍就说过,当ViewRootImpl的performTraversals中measure和layout执行完成以后会接着执行mView.layout,具体如下:

[Java] 纯文本查看 复制代码
private void performTraversals() {
    ......
    final Rect dirty = mDirty;
    ......
    canvas = mSurface.lockCanvas(dirty);
    ......
    mView.draw(canvas);
    ......
}

draw过程也是在ViewRootImpl的performTraversals()内部调运的,其调用顺序在measure()和layout()之后,这里的mView对于Actiity来说就是PhoneWindow.DecorView,ViewRootImpl中的代码会创建一个Canvas对象,然后调用View的draw()方法来执行具体的绘制工。所以又回归到了ViewGroup与View的树状递归draw过程。

先来看下View树的递归draw流程图,如下:

如下我们详细分析这一过程。

4-1 draw源码分析

由于ViewGroup没有重写View的draw方法,所以如下直接从View的draw方法开始分析:

[Java] 纯文本查看 复制代码
 public void draw(Canvas canvas) {
        ......
        /*
         * Draw traversal performs several drawing steps which must be executed
         * in the appropriate order:
         *
         *      1. Draw the background
         *      2. If necessary, save the canvas' layers to prepare for fading
         *      3. Draw view's content
         *      4. Draw children
         *      5. If necessary, draw the fading edges and restore layers
         *      6. Draw decorations (scrollbars for instance)
         */

        // Step 1, draw the background, if needed
        ......
        if (!dirtyOpaque) {
            drawBackground(canvas);
        }

        // skip step 2 & 5 if possible (common case)
        ......

        // Step 2, save the canvas' layers
        ......
            if (drawTop) {
                canvas.saveLayer(left, top, right, top + length, null, flags);
            }
        ......

        // Step 3, draw the content
        if (!dirtyOpaque) onDraw(canvas);

        // Step 4, draw the children
        dispatchDraw(canvas);

        // Step 5, draw the fade effect and restore layers
        ......
        if (drawTop) {
            matrix.setScale(1, fadeHeight * topFadeStrength);
            matrix.postTranslate(left, top);
            fade.setLocalMatrix(matrix);
            p.setShader(fade);
            canvas.drawRect(left, top, right, top + length, p);
        }
        ......

        // Step 6, draw decorations (scrollbars)
        onDrawScrollBars(canvas);
        ......
    }

看见整个View的draw方法很复杂,但是源码注释也很明显。从注释可以看出整个draw过程分为了6步。源码注释说(”skip step 2 & 5 if possible (common case)”)第2和5步可以跳过,所以我们接下来重点剩余四步。如下:

第一步,对View的背景进行绘制。

可以看见,draw方法通过调运drawBackground(canvas);方法实现了背景绘制。我们来看下这个方法源码,如下:

[Java] 纯文本查看 复制代码
 private void drawBackground(Canvas canvas) {
        //获取xml中通过android:background属性或者代码中setBackgroundColor()、setBackgroundResource()等方法进行赋值的背景Drawable
        final Drawable background = mBackground;
        ......
        //根据layout过程确定的View位置来设置背景的绘制区域
        if (mBackgroundSizeChanged) {
            background.setBounds(0, 0,  mRight - mLeft, mBottom - mTop);
            mBackgroundSizeChanged = false;
            rebuildOutline();
        }
        ......
            //调用Drawable的draw()方法来完成背景的绘制工作
            background.draw(canvas);
        ......
    }

第三步,对View的内容进行绘制。

可以看到,这里去调用了一下View的onDraw()方法,所以我们看下View的onDraw方法(ViewGroup也没有重写该方法),如下:

[Java] 纯文本查看 复制代码
/**
     * Implement this to do your drawing.
     *
     * @param canvas the canvas on which the background will be drawn
     */
    protected void onDraw(Canvas canvas) {
    }

可以看见,这是一个空方法。因为每个View的内容部分是各不相同的,所以需要由子类去实现具体逻辑。

第四步,对当前View的所有子View进行绘制,如果当前的View没有子View就不需要进行绘制。

我们来看下View的draw方法中的dispatchDraw(canvas);方法源码,可以看见如下:

[Java] 纯文本查看 复制代码
/**
     * Called by draw to draw the child views. This may be overridden
     * by derived classes to gain control just before its children are drawn
     * (but after its own view has been drawn).
     * @param canvas the canvas on which to draw the view
     */
    protected void dispatchDraw(Canvas canvas) {

    }

View的dispatchDraw()方法是一个空方法,而且注释说明了如果View包含子类需要重写他,所以我们有必要看下ViewGroup的dispatchDraw方法源码(这也就是刚刚说的对当前View的所有子View进行绘制,如果当前的View没有子View就不需要进行绘制的原因,因为如果是View调运该方法是空的,而ViewGroup才有实现),如下:

[Java] 纯文本查看 复制代码
 @Override
    protected void dispatchDraw(Canvas canvas) {
        ......
        final int childrenCount = mChildrenCount;
        final View[] children = mChildren;
        ......
        for (int i = 0; i < childrenCount; i++) {
            ......
            if ((child.mViewFlags & VISIBILITY_MASK) == VISIBLE || child.getAnimation() != null) {
                more |= drawChild(canvas, child, drawingTime);
            }
        }
        ......
        // Draw any disappearing views that have animations
        if (mDisappearingChildren != null) {
            ......
            for (int i = disappearingCount; i >= 0; i--) {
                ......
                more |= drawChild(canvas, child, drawingTime);
            }
        }
        ......
    }

可以看见,ViewGroup确实重写了View的dispatchDraw()方法,该方法内部会遍历每个子View,然后调用drawChild()方法,我们可以看下ViewGroup的drawChild方法,如下:

[Java] 纯文本查看 复制代码
 protected boolean drawChild(Canvas canvas, View child, long drawingTime) {
        return child.draw(canvas, this, drawingTime);
    }

可以看见drawChild()方法调运了子View的draw()方法。所以说ViewGroup类已经为我们重写了dispatchDraw()的功能实现,我们一般不需要重写该方法,但可以重载父类函数实现具体的功能。

第六步,对View的滚动条进行绘制。

可以看到,这里去调用了一下View的onDrawScrollBars()方法,所以我们看下View的onDrawScrollBars(canvas);方法,如下:

[Java] 纯文本查看 复制代码
 /**
     * <p>Request the drawing of the horizontal and the vertical scrollbar. The
     * scrollbars are painted only if they have been awakened first.</p>
     *
     * @param canvas the canvas on which to draw the scrollbars
     *
     * @see #awakenScrollBars(int)
     */
    protected final void onDrawScrollBars(Canvas canvas) {
        //绘制ScrollBars分析不是我们这篇的重点,所以暂时不做分析
        ......
    }

可以看见其实任何一个View都是有(水平垂直)滚动条的,只是一般情况下没让它显示而已。

到此,View的draw绘制部分源码分析完毕,我们接下来进行一些总结。

4-2 draw原理总结

可以看见,绘制过程就是把View对象绘制到屏幕上,整个draw过程需要注意如下细节:

5 View的invalidate和postInvalidate方法源码分析

你可能已经看见了,在上面分析View的三步绘制流程中最后都有调运一个叫invalidate的方法,这个方法是啥玩意?为何出现频率这么高?很简单,我们拿出来分析分析不就得了。

5-1 invalidate方法源码分析

来看一下View类中的一些invalidate方法(ViewGroup没有重写这些方法),如下:

[Java] 纯文本查看 复制代码
/**
     * Mark the area defined by dirty as needing to be drawn. If the view is
     * visible, {@link #onDraw(android.graphics.Canvas)} will be called at some
     * point in the future.
     * <p>
     * This must be called from a UI thread. To call from a non-UI thread, call
     * {@link #postInvalidate()}.
     * <p>
     * <b>WARNING:</b> In API 19 and below, this method may be destructive to
     * {@code dirty}.
     *
     * @param dirty the rectangle representing the bounds of the dirty region
     */
     //看见上面注释没有?public,只能在UI Thread中使用,别的Thread用postInvalidate方法,View是可见的才有效,回调onDraw方法,针对局部View
    public void invalidate(Rect dirty) {
        final int scrollX = mScrollX;
        final int scrollY = mScrollY;
        //实质还是调运invalidateInternal方法
        invalidateInternal(dirty.left - scrollX, dirty.top - scrollY,
                dirty.right - scrollX, dirty.bottom - scrollY, true, false);
    }

    /**
     * Mark the area defined by the rect (l,t,r,b) as needing to be drawn. The
     * coordinates of the dirty rect are relative to the view. If the view is
     * visible, {@link #onDraw(android.graphics.Canvas)} will be called at some
     * point in the future.
     * <p>
     * This must be called from a UI thread. To call from a non-UI thread, call
     * {@link #postInvalidate()}.
     *
     * @param l the left position of the dirty region
     * @param t the top position of the dirty region
     * @param r the right position of the dirty region
     * @param b the bottom position of the dirty region
     */
     //看见上面注释没有?public,只能在UI Thread中使用,别的Thread用postInvalidate方法,View是可见的才有效,回调onDraw方法,针对局部View
    public void invalidate(int l, int t, int r, int b) {
        final int scrollX = mScrollX;
        final int scrollY = mScrollY;
        //实质还是调运invalidateInternal方法
        invalidateInternal(l - scrollX, t - scrollY, r - scrollX, b - scrollY, true, false);
    }

    /**
     * Invalidate the whole view. If the view is visible,
     * {@link #onDraw(android.graphics.Canvas)} will be called at some point in
     * the future.
     * <p>
     * This must be called from a UI thread. To call from a non-UI thread, call
     * {@link #postInvalidate()}.
     */
     //看见上面注释没有?public,只能在UI Thread中使用,别的Thread用postInvalidate方法,View是可见的才有效,回调onDraw方法,针对整个View
    public void invalidate() {
        //invalidate的实质还是调运invalidateInternal方法
        invalidate(true);
    }

    /**
     * This is where the invalidate() work actually happens. A full invalidate()
     * causes the drawing cache to be invalidated, but this function can be
     * called with invalidateCache set to false to skip that invalidation step
     * for cases that do not need it (for example, a component that remains at
     * the same dimensions with the same content).
     *
     * @param invalidateCache Whether the drawing cache for this view should be
     *            invalidated as well. This is usually true for a full
     *            invalidate, but may be set to false if the View's contents or
     *            dimensions have not changed.
     */
     //看见上面注释没有?default的权限,只能在UI Thread中使用,别的Thread用postInvalidate方法,View是可见的才有效,回调onDraw方法,针对整个View
    void invalidate(boolean invalidateCache) {
    //实质还是调运invalidateInternal方法
        invalidateInternal(0, 0, mRight - mLeft, mBottom - mTop, invalidateCache, true);
    }

    //!!!!!!看见没有,这是所有invalidate的终极调运方法!!!!!!
    void invalidateInternal(int l, int t, int r, int b, boolean invalidateCache,
            boolean fullInvalidate) {
        ......
            // Propagate the damage rectangle to the parent view.
            final AttachInfo ai = mAttachInfo;
            final ViewParent p = mParent;
            if (p != null && ai != null && l < r && t < b) {
                final Rect damage = ai.mTmpInvalRect;
                //设置刷新区域
                damage.set(l, t, r, b);
                //传递调运Parent ViewGroup的invalidateChild方法
                p.invalidateChild(this, damage);
            }
            ......
    }

看见没有,View的invalidate(invalidateInternal)方法实质是将要刷新区域直接传递给了父ViewGroup的invalidateChild方法,在invalidate中,调用父View的invalidateChild,这是一个从当前向上级父View回溯的过程,每一层的父View都将自己的显示区域与传入的刷新Rect做交集 。所以我们看下ViewGroup的invalidateChild方法,源码如下:

[Java] 纯文本查看 复制代码
public final void invalidateChild(View child, final Rect dirty) {
        ViewParent parent = this;
        final AttachInfo attachInfo = mAttachInfo;
        ......
        do {
            ......
            //循环层层上级调运,直到ViewRootImpl会返回null
            parent = parent.invalidateChildInParent(location, dirty);
            ......
        } while (parent != null);
    }

这个过程最后传递到ViewRootImpl的invalidateChildInParent方法结束,所以我们看下ViewRootImpl的invalidateChildInParent方法,如下:

[Java] 纯文本查看 复制代码
 @Override
    public ViewParent invalidateChildInParent(int[] location, Rect dirty) {
        ......
        //View调运invalidate最终层层上传到ViewRootImpl后最终触发了该方法
        scheduleTraversals();
        ......
        return null;
    }

这个ViewRootImpl类的invalidateChildInParent方法直接返回了null,也就是上面ViewGroup中说的,层层上级传递到ViewRootImpl的invalidateChildInParent方法结束了那个do while循环。看见这里调运的scheduleTraversals这个方法吗?scheduleTraversals会通过Handler的Runnable发送一个异步消息,调运doTraversal方法,然后最终调用performTraversals()执行重绘。开头背景知识介绍说过的,performTraversals就是整个View数开始绘制的起始调运地方,所以说View调运invalidate方法的实质是层层上传到父级,直到传递到ViewRootImpl后触发了scheduleTraversals方法,然后整个View树开始重新按照上面分析的View绘制流程进行重绘任务。

到此View的invalidate方法原理就分析完成了。

5-2 postInvalidate方法源码分析

上面分析invalidate方法时注释中说该方法只能在UI Thread中执行,其他线程中需要使用postInvalidate方法,所以我们来分析分析postInvalidate这个方法源码。如下:

[Java] 纯文本查看 复制代码
public void postInvalidate() {
        postInvalidateDelayed(0);
    }

继续看下他的调运方法postInvalidateDelayed,如下:

[Java] 纯文本查看 复制代码
 public void postInvalidateDelayed(long delayMilliseconds) {
        // We try only with the AttachInfo because there's no point in invalidating
        // if we are not attached to our window
        final AttachInfo attachInfo = mAttachInfo;
        //核心,实质就是调运了ViewRootImpl.dispatchInvalidateDelayed方法
        if (attachInfo != null) {
            attachInfo.mViewRootImpl.dispatchInvalidateDelayed(this, delayMilliseconds);
        }
    }

我们继续看他调运的ViewRootImpl类的dispatchInvalidateDelayed方法,如下源码:

[Java] 纯文本查看 复制代码
 public void dispatchInvalidateDelayed(View view, long delayMilliseconds) {
        Message msg = mHandler.obtainMessage(MSG_INVALIDATE, view);
        mHandler.sendMessageDelayed(msg, delayMilliseconds);
    }

通过ViewRootImpl类的Handler发送了一条MSG_INVALIDATE消息,继续追踪这条消息的处理可以发现:

[Java] 纯文本查看 复制代码
public void handleMessage(Message msg) {
    ......
    switch (msg.what) {
    case MSG_INVALIDATE:
        ((View) msg.obj).invalidate();
        break;
    ......
    }
    ......
}

实质就是又在UI Thread中调运了View的invalidate();方法,那接下来View的invalidate();方法我们就不说了,上名已经分析过了。

到此整个View的postInvalidate方法就分析完成了。

5-3 invalidate与postInvalidate方法总结

依据上面对View的invalidate分析我总结绘制如下流程图:

依据上面对View的postInvalidate分析我总结绘制如下流程图:

关于这两个方法的具体流程和原理上面也分析过了,流程图也给出了,相信已经很明确了,没啥需要解释的了。所以我们对其做一个整体总结,归纳出重点如下:

invalidate系列方法请求重绘View树(也就是draw方法),如果View大小没有发生变化就不会调用layout过程,并且只绘制那些“需要重绘的”View,也就是哪个View(View只绘制该View,ViewGroup绘制整个ViewGroup)请求invalidate系列方法,就绘制该View。

常见的引起invalidate方法操作的原因主要有:

5-4 通过invalidate方法分析结果回过头去解决一个背景介绍中的疑惑

分析完invalidate后需要你回过头去想一个问题。还记不记得这篇文章的开头背景介绍,我们说整个View绘制流程的最初代码是在ViewRootImpl类的performTraversals()方法中开始的。上面当时只是告诉你了这个结论,至于这个ViewRootImpl类的performTraversals()方法为何会被触发没有说明原因。现在我们就来分析一下这个触发的源头。

PhoneWindow的setContentView方法源码,如下

[Java] 纯文本查看 复制代码
 @Override
    public void setContentView(View view, ViewGroup.LayoutParams params) {
        ......
        //如果mContentParent为空进行一些初始化,实质mContentParent是通过findViewById(ID_ANDROID_CONTENT);获取的id为content的FrameLayout的布局(不清楚的请先看《Android应用setContentView与LayoutInflater加载解析机制源码分析》文章)
        if (mContentParent == null) {
            installDecor();
        }
        ......
        //把我们的view追加到mContentParent
        mContentParent.addView(view, params);
        ......
    }

这个方法是Activity中setContentView的实现,我们继续看下这个方法里调运的addView方法,也就是ViewGroup的addView方法,如下:

[Java] 纯文本查看 复制代码
public void addView(View child) {
        addView(child, -1);
    }

    public void addView(View child, int index) {
        ......
        addView(child, index, params);
    }

    public void addView(View child, int index, LayoutParams params) {
        ......
        //该方法稍后后面会详细分析
        requestLayout();
        //重点关注!!!
        invalidate(true);
        ......
    }

看见addView调运invalidate方法没有?这不就真相大白了。当我们写一个Activity时,我们一定会通过setContentView方法将我们要展示的界面传入该方法,该方法会讲我们界面通过addView追加到id为content的一个FrameLayout(ViewGroup)中,然后addView方法中通过调运invalidate(true)去通知触发ViewRootImpl类的performTraversals()方法,至此递归绘制我们自定义的所有布局。

6 View的requestLayout方法源码分析6-1 requestLayout方法分析

和invalidate类似,其实在上面分析View绘制流程时或多或少都调运到了这个方法,而且这个方法对于View来说也比较重要,所以我们接下来分析一下他。如下View的requestLayout源码:

[Java] 纯文本查看 复制代码
public void requestLayout() {
        ......
        if (mParent != null && !mParent.isLayoutRequested()) {
            //由此向ViewParent请求布局
            //从这个View开始向上一直requestLayout,最终到达ViewRootImpl的requestLayout
            mParent.requestLayout();
        }
        ......
    }

当我们触发View的requestLayout时其实质就是层层向上传递,直到ViewRootImpl为止,然后触发ViewRootImpl的requestLayout方法,如下就是ViewRootImpl的requestLayout方法:

[Java] 纯文本查看 复制代码
@Override
    public void requestLayout() {
        if (!mHandlingLayoutInLayoutRequest) {
            checkThread();
            mLayoutRequested = true;
            //View调运requestLayout最终层层上传到ViewRootImpl后最终触发了该方法
            scheduleTraversals();
        }
    }

类似于上面分析的invalidate过程,只是设置的标记不同,导致对于View的绘制流程中触发的方法不同而已。

6-2 requestLayout方法总结

可以看见,这些方法都是大同小异。对于requestLayout方法来说总结如下:

requestLayout()方法会调用measure过程和layout过程,不会调用draw过程,也不会重新绘制任何View包括该调用者本身。

7 View绘制流程总结

至此整个关于Android应用程序开发中的View绘制机制及相关重要方法都已经分析完毕。



其他精华资源推荐:【强荐!】2016年最新Android学习路线图——按此路线图学习月薪过万{ 火速收入}
平均薪资近12K,Android续写“刷薪”记录!
Android消息机制的原理
[持续更新]2016最新Android视频教程+源码+技巧/经验+软件+面试


作者: wangyuit    时间: 2016-10-28 00:19
安卓难不??????

作者: 马冬    时间: 2016-11-1 00:06
太高端.........
作者: wxm278187618    时间: 2016-11-12 01:37
感谢楼主分享




欢迎光临 黑马程序员技术交流社区 (http://bbs.itheima.com/) 黑马程序员IT技术论坛 X3.2