黑马程序员技术交流社区

标题: choose 函数实现条件筛选 [打印本页]

作者: luguojiejie    时间: 2017-3-20 15:16
标题: choose 函数实现条件筛选
对于数组,我们有时候需要进行类似 switch 和 case 进行条件选择,此时使用 choose 函数十分方便:

In [1]:
import numpy as np
In [2]:
control = np.array([[1,0,1],
                    [2,1,0],
                    [1,2,2]])

np.choose(control, [10, 11, 12])
Out[2]:
array([[11, 10, 11],
       [12, 11, 10],
       [11, 12, 12]])
在上面的例子中,choose 将 0,1,2 对应的值映射为了 10, 11, 12,这里的 0,1,2 表示对应的下标。

事实上, choose 不仅仅能接受下标参数,还可以接受下标所在的位置:

In [3]:
i0 = np.array([[0,1,2],
               [3,4,5],
               [6,7,8]])
i2 = np.array([[20,21,22],
               [23,24,25],
               [26,27,28]])
control = np.array([[1,0,1],
                    [2,1,0],
                    [1,2,2]])

np.choose(control, [i0, 10, i2])
Out[3]:
array([[10,  1, 10],
       [23, 10,  5],
       [10, 27, 28]])
这里,control 传入第一个 1 对应的是 10,传入的第一个 0 对应于 i0 相应位置的值即 1,剩下的以此类推。

下面的例子将数组中所有小于 10 的值变成了 10。

In [4]:
a = np.array([[ 0, 1, 2],
              [10,11,12],
              [20,21,22]])

a < 10
Out[4]:
array([[ True,  True,  True],
       [False, False, False],
       [False, False, False]], dtype=bool)
In [5]:
np.choose(a < 10, (a, 10))
Out[5]:
array([[10, 10, 10],
       [10, 11, 12],
       [20, 21, 22]])
下面的例子将数组中所有小于 10 的值变成了 10,大于 15 的值变成了 15。

In [6]:
a = np.array([[ 0, 1, 2],
              [10,11,12],
              [20,21,22]])

lt = a < 10
gt = a > 15

choice = lt + 2 * gt
choice
Out[6]:
array([[1, 1, 1],
       [0, 0, 0],
       [2, 2, 2]])
In [7]:
np.choose(choice, (a, 10, 15))
Out[7]:
array([[10, 10, 10],
       [10, 11, 12],
       [15, 15, 15]])




欢迎光临 黑马程序员技术交流社区 (http://bbs.itheima.com/) 黑马程序员IT技术论坛 X3.2