黑马程序员技术交流社区

标题: 【石家庄校区】Pandas简介 [打印本页]

作者: 三胖的减肥之路    时间: 2018-2-8 15:07
标题: 【石家庄校区】Pandas简介
本帖最后由 三胖的减肥之路 于 2018-2-8 15:16 编辑

[Python] 纯文本查看 复制代码
pandas是一个专门用于数据分析的python library

Pandas简介
python数据分析library
基于numpy (对ndarray的操作)
有一种用python做Excel/SQL/R的感觉
目录
Series
DataFrame
Index
文件读写

## 数据结构Series
构造和初始化Series

import pandas as pd
import numpy as np
Series是一个一维的数据结构,下面是一些初始化Series的方法。


s = pd.Series([7, "Beijing", 2.17, 3.1415926, "Happy Birthday"])
s
0                 7
1           Beijing
2              2.17
3           3.14159
4    Happy Birthday
dtype: object

l = [7, "Beijing", 2.17, 3.1415926, "Happy Birthday"]
l
[7, 'Beijing', 2.17, 3.1415926, 'Happy Birthday']

s[1:3]
1    Beijing
2       2.17
dtype: object
pandas会默认用0到n-1来作为Series的index,但是我们也可以自己指定index。index我们可以把它理解为dict里面的key。


s = pd.Series([7, "Beijing", 2.17, 3.1415926, "Happy Birthday"],
             index=["A", "B", "C", "D", "E"])
s
A                 7
B           Beijing
C              2.17
D           3.14159
E    Happy Birthday
dtype: object

s["D"]
3.1415926
还可以用dictionary来构造一个Series,因为Series本来就是key value pairs。


cities = {"Beijing": 55000, "Shanghai": 60000, "Shenzhen": 50000, "Hangzhou": 20000, "Guangzhou": 30000, "Suzhou": None}
apts = pd.Series(cities, name="price")
apts
Beijing      55000.0
Guangzhou    30000.0
Hangzhou     20000.0
Shanghai     60000.0
Shenzhen     50000.0
Suzhou           NaN
Name: price, dtype: float64

type(apts)
pandas.core.series.Series
numpy ndarray构建一个Series


list("abcde")
['a', 'b', 'c', 'd', 'e']

s = pd.Series(np.random.randn(5), index=list("abcde"))
s
a    1.434526
b   -1.841912
c   -1.343372
d   -1.065630
e   -1.978959
dtype: float64
选择数据
我们可以像对待一个list一样对待Series


apts[[4,3,2]]
Shenzhen    50000.0
Shanghai    60000.0
Hangzhou    20000.0
Name: price, dtype: float64

apts[3:]
Shanghai    60000.0
Shenzhen    50000.0
Suzhou          NaN
Name: price, dtype: float64

apts[:-2]
Beijing      55000.0
Guangzhou    30000.0
Hangzhou     20000.0
Shanghai     60000.0
Name: price, dtype: float64
为什么下面这样会拿到两个NaN呢?


a = [1,2,3,4,5]
b = [2,3,4,5,6]
a+b
[1, 2, 3, 4, 5, 2, 3, 4, 5, 6]

apts[:-1]
Beijing      55000.0
Guangzhou    30000.0
Hangzhou     20000.0
Shanghai     60000.0
Shenzhen     50000.0
Name: price, dtype: float64

apts[1:]
Guangzhou    30000.0
Hangzhou     20000.0
Shanghai     60000.0
Shenzhen     50000.0
Suzhou           NaN
Name: price, dtype: float64

apts[:-1] + apts[1:]
Beijing           NaN
Guangzhou     60000.0
Hangzhou      40000.0
Shanghai     120000.0
Shenzhen     100000.0
Suzhou            NaN
Name: price, dtype: float64
Series就像一个dict,前面定义的index就是用来选择数据的


apts["Guangzhou"]
30000.0

apts[["Hangzhou", "Beijing", "Shenzhen"]]
Hangzhou    20000.0
Beijing     55000.0
Shenzhen    50000.0
Name: price, dtype: float64

"Shanghai" in apts
True

"Chongqing" in apts
False
比较安全的用key读取value的方法如下


print(apts.get("Chongqing", 0))
0
下面这种写法,如果key不存在,就可能会报错了


apts[apts < 50000]
Guangzhou    30000.0
Hangzhou     20000.0
Name: price, dtype: float64

apts[apts > apts.median()]
Beijing     55000.0
Shanghai    60000.0
Name: price, dtype: float64
下面我再详细展示一下这个boolean indexing是如何工作的


less_than_50000 = apts < 50000
less_than_50000
Beijing      False
Guangzhou     True
Hangzhou      True
Shanghai     False
Shenzhen     False
Suzhou       False
Name: price, dtype: bool

apts[less_than_50000]
Guangzhou    30000.0
Hangzhou     20000.0
Name: price, dtype: float64
Series元素赋值
Series的元素可以被赋值


apts["Shenzhen"] = 80000
apts
Beijing      55000.0
Guangzhou    30000.0
Hangzhou     20000.0
Shanghai     60000.0
Shenzhen     80000.0
Suzhou           NaN
Name: price, dtype: float64

apts[apts < 50000] = 40000
apts
Beijing      55000.0
Guangzhou    40000.0
Hangzhou     40000.0
Shanghai     60000.0
Shenzhen     80000.0
Suzhou           NaN
Name: price, dtype: float64
前面讲过的boolean indexing在赋值的时候也可以用

数学运算
下面我们来讲一些基本的数学运算。


apts / 2
Beijing      27500.0
Guangzhou    20000.0
Hangzhou     20000.0
Shanghai     30000.0
Shenzhen     40000.0
Suzhou           NaN
Name: price, dtype: float64

apts * 2
Beijing      110000.0
Guangzhou     80000.0
Hangzhou      80000.0
Shanghai     120000.0
Shenzhen     160000.0
Suzhou            NaN
Name: price, dtype: float64

apts + 10000
Beijing      65000.0
Guangzhou    50000.0
Hangzhou     50000.0
Shanghai     70000.0
Shenzhen     90000.0
Suzhou           NaN
Name: price, dtype: float64

apts ** 2
Beijing      3.025000e+09
Guangzhou    1.600000e+09
Hangzhou     1.600000e+09
Shanghai     3.600000e+09
Shenzhen     6.400000e+09
Suzhou                NaN
Name: price, dtype: float64

np.square(apts)
Beijing      3.025000e+09
Guangzhou    1.600000e+09
Hangzhou     1.600000e+09
Shanghai     3.600000e+09
Shenzhen     6.400000e+09
Suzhou                NaN
Name: price, dtype: float64
numpy的运算可以被运用到pandsa上去

我们再定义一个新的Series做加法


cars = pd.Series({"Beijing": 300000, "Shanghai": 350000, "Shenzhen": 300000,
                 "Tianjian": 200000, "Guangzhou": 250000, "Chongqing": 150000})
cars.astype(str)
Beijing      300000
Chongqing    150000
Guangzhou    250000
Shanghai     350000
Shenzhen     300000
Tianjian     200000
dtype: object

apts
Beijing      55000.0
Guangzhou    40000.0
Hangzhou     40000.0
Shanghai     60000.0
Shenzhen     80000.0
Suzhou           NaN
Name: price, dtype: float64

cars + apts*100
Beijing      5800000.0
Chongqing          NaN
Guangzhou    3250000.0
Hangzhou           NaN
Shanghai     6350000.0
Shenzhen     5300000.0
Suzhou             NaN
Tianjian           NaN
dtype: float64
数据缺失
reference


"Hangzhou" in cars
False

apts.notnull()
Beijing       True
Guangzhou     True
Hangzhou      True
Shanghai      True
Shenzhen      True
Suzhou       False
Name: price, dtype: bool

apts.isnull()
Beijing      False
Guangzhou    False
Hangzhou     False
Shanghai     False
Shenzhen     False
Suzhou        True
Name: price, dtype: bool

apts[apts.isnull()] = apts.mean()
apts
Beijing      55000.0
Guangzhou    30000.0
Hangzhou     20000.0
Shanghai     60000.0
Shenzhen     50000.0
Suzhou       43000.0
Name: price, dtype: float64


作者: Yin灬Yan    时间: 2018-3-4 15:43
我来占层楼啊   




欢迎光临 黑马程序员技术交流社区 (http://bbs.itheima.com/) 黑马程序员IT技术论坛 X3.2