单向散列函数(one-wayftnction)有一个输人和一个输出,其中输人称为消息(message),输出称为散列值(hashvalue)。单向散列函数可以根据消息的内容计算出散列值,而散列值就可以被用来检查消息的完整性。
单向散列函数也称为消息摘要函数(message digest function)、哈希函数或者杂凑函数。 单向散列函数输出的散列值也称为消息摘要(message digest)或者指纹(fingerprint)。 完整性也称为一致性。
我们可以使用单向散列函数来确认自己下载的软件是否被篡改。很多软件,尤其是安全相关的软件都会把通过单向散列函数计算出的散列值公布在自己的官方网站上。用户在下载到软件之后,可以自行计算散列值,然后与官方网站上公布的散列值进行对比。通过散列值,用户可以确认自己所下载到的文件与软件作者所提供的文件是否一致。这样的方法,在可以通过多种途径得到软件的情况下非常有用。为了减轻服务器的压力,很多软件作者都会借助多个网站(镜像站点)来发布软件,在这种情况下,单向散列函数就会在检测软件是否被篡改方面发挥重要作用。
使用单向散列函数可以构造消息认证码。消息认证码是将“发送者和接收者之间的共享密钥”和“消息,进行混合后计算出的散列值。使用消息认证码可以检测并防止通信过程中的错误、篡改以及伪装。
在进行数字签名时也会使用单向散列函数。数字签名是现实社会中的签名(sign)和盖章这样的行为在数字世界中的实现。数字签名的处理过程非常耗时,因此一般不会对整个消息内容直接施加数字签名,而是先通过单向散列函数计算出消息的散列值,然后再对这个散列值施加数字签名。
使用单向散列函数可以构造伪随机数生成器。密码技术中所使用的随机数需要具备“事实上不可能根据过去的随机数列预测未来的随机数列”这样的性质。为了保证不可预测性,可以利用单向散列函数的单向性。
使用单向散列函数可以构造一次性口令(one-time password)。一次性口令经常被用于服务器对客户端的合法性认证。在这种方式中,通过使用单向散列函数可以保证口令只在通信链路上传送一次(one-time),因此即使窃听者窃取了口令,也无法使用。
MD4是由Rivest于1990年设计的单向散列函数,能够产生==128比特==的散列值(RFC1186,修订版RFC1320)。不过,随着Dobbertin提出寻找MD4散列碰撞的方法,因此现在它已经不安全了。MD5是由Rwest于1991年设计的单项散列函数,能够产生==128比特==的散列值(RFC1321)。MD5的强抗碰撞性已经被攻破,也就是说,现在已经能够产生具备相同散列值的两条不同的消息,因此它也已经不安全了。MD4和MD5中的MD是消息摘要(Message Digest)的缩写。
SHA-1是由NIST(National Institute Of Standardsand Technology,美国国家标准技术研究所)设计的一种能够产生==160比特==的散列值的单向散列函数。1993年被作为美国联邦信息处理标准规格(FIPS PUB 180)发布的是SHA,1995年发布的修订版FIPS PUB 180-1称为SHA-1。SHA-1的消息长度存在上限,但这个值接近于2^64^比特,是个非常巨大的数值,因此在实际应用中没有问题。SHA-256、SHA-384和SHA-512都是由NIST设计的单向散列函数,它们的散列值长度分别为==256比特==、==384==比特和==512比特==。这些单向散列函数合起来统称SHA-2,它们的消息长度也存在上限(SHA-256的上限接近于 2^64^ 比特,SHA-384 和 SHA-512的上限接近于 2^128^ 比特)。这些单向散列函数是于2002年和 SHA-1 一起作为 FIPS PUB 180-2发布的 SHA-1 的强抗碰撞性已于2005年被攻破, 也就是说,现在已经能够产生具备相同散列值的两条不同的消息。不过,SHA-2还尚未被攻破。
哈希函数 | 散列值长度(bit) | 散列值长度(byte) |
Md4/Md5 | 128bit | 16byte |
SHA-1 | 160bit | 20byte |
SHA-256 | 256bit | 32byte |
SHA-384 | 384bit | 48byte |
SHA-512 | 512bit | 64byte |
SHA-224 | 224bie | 28byte |
欢迎光临 黑马程序员技术交流社区 (http://bbs.itheima.com/) | 黑马程序员IT技术论坛 X3.2 |