黑马程序员技术交流社区

标题: 【上海校区】Kafka原理和集群测试 [打印本页]

作者: 梦缠绕的时候    时间: 2018-7-18 09:44
标题: 【上海校区】Kafka原理和集群测试
本帖最后由 梦缠绕的时候 于 2018-7-18 09:45 编辑

Kafka原理和集群测试
Kafka的关键设计决策Kafka是一个消息系统,由LinkedIn贡献给Apache基金会,称为Apache的一个顶级项目。Kafka最初用作LinkedIn的活动流(activity stream)和运营数据处理管道(pipeline)的基础。它具有可扩展、吞吐量大和可持久化等特征,以及非常好的分区、复制和容错特征。
1). Kafka在设计之时为就将持久化消息作为通常的使用情况进行了考虑。
2). Kafka主要的设计约束是吞吐量,而不是功能。
3). Kafka有关哪些数据已经被使用了的状态信息保存为数据使用者(consumer)的一部分,而不是保存在服务器之上。
4). Kafka是一种显式的分布式系统。它假设,数据生产者(producer)、代理(brokers)和数据使用者(consumer)分散于多台机器之上。
而相比而言,传统的消息队列不能很好的支持(如超长的未处理数据、不能有效持久化)。对于数据的可用性,Kafka提供了两个保证:
(1). 生产者发送到Topic的分区上消息将会按照它们发送的顺序,而消费者收到的消息也是此顺序
(2). 如果一个Topic配置了复制因子( replication facto)为N, 那么可以允许N-1服务器当掉而不丢失任何已经增加的消息
Kafka中几个关键术语
Topic:Kafka将消息种子(Feed)分门别类, 每一类的消息称之为话题(Topic).
Producer:发布消息的对象称之为话题生产者(Kafka topic producer)
Consumer:订阅消息并处理发布的消息的种子的对象称之为话题消费者(consumers)
Broker:已发布的消息保存在一组服务器中,称之为Kafka集群。集群中的每一个服务器都是一个代理(Broker). 消费者可以订阅一个或多个话题,并从Broker拉数据,从而消费这些已发布的消息。
Kafka中的Topic

Topic是发布的消息的类别或者种子Feed名。对于每一个Topic, Kafka集群维护这一个分区的log,就像下图中的示例:Kafka集群
每一个分区都是一个顺序的、不可变的消息队列, 并且可以持续的添加。分区中的消息都被分配了一个序列号,称之为偏移量(offset),在每个分区中此偏移量都是唯一的。
Kafka集群保持所有的消息,直到它们过期,无论消息是否被消费了。
实际上消费者所持有的仅有的元数据就是这个偏移量,也就是消费者在这个log中的位置。 这个偏移量由消费者控制:正常情况当消费者消费消息的时候,偏移量也线性的的增加。但是实际偏移量由消费者控制,消费者可以将偏移量重置为更老的一个偏移量,重新读取消息。
可以看到这种设计对消费者来说操作自如, 一个消费者的操作不会影响其它消费者对此log的处理。
再说说分区。Kafka中采用分区的设计有几个目的。
一、可以处理更多的消息,不受单台服务器的限制。Topic拥有多个分区意味着它可以进行扩展,并处理更多的数据。
二、分区可以作为并行处理的单元。
Topic的分区Log被分布到集群中的多个服务器上。每个服务器处理它持有的分区。 根据配置每个分区还可以复制到其它服务器作为备份容错。
每个分区有一个leader,零或多个replica。Leader处理此分区的所有的读写请求而replica被动的复制数据。如果leader当机,其它的一个replica会被推举为新的leader。
一台服务器可能同时是一个分区的leader,另一个分区的replica。 这样可以平衡负载,避免所有的请求都只让一台或者某几台服务器处理。
关于复制原理,参考下面官档翻译:
Kafka 的集群复制设计
Kafka的集群部署
Kafka中主要有三种模式,
单机broker模式
单机多broker模式(伪分布式)
多机多broker模式(集群)
和hadoop一样,前两种多用于开发测试。第三种才是实际生产中可用的部署模式,下面介绍一下三节点kafka集群的部署流程
软件的安装直接解压缩即可:
关键参数的解释,可以参考http://debugo.com/kafka-params/
vim kafka_2.10-0.8.1.1/config/server.properties
在debugo01,debugo02,debugo03上分别启动zookeeper和kafka Server
这时可以在log中找到,新的broker已经将数据注册到znode中。
Topic的分区和复制
1. 创建debugo01,这个topic分区数为3,复制为1(不复制)。该topic跨越全部broker。下面管理命令在任意kafka节点上执行即可
2. 创建debugo02,这个topic分区数为1,复制为3(每个主机都有一份)。该topic跨越全部broker。下面管理命令在任意kafka节点上执行即可
bin/kafka-topics.sh --create --zookeeper debugo01,debugo02,debugo03 --replication-factor 3 --partitions 1 --topic debugo02
3. 列出topic信息
4. 列出topic描述信息
5. 检查log目录,对于topic debugo01,debugo01为0号分区,debugo02为1号分区。而topic debugo02则复制了3份,都为0号分区
6. 下面topic debugo03,replication-factor为2,partition为3.那么broker id为1的debugo01会如下面describe所示,保存0号分区和1号分区。
而0号分区的repica leader为broker id = 3,包含3和1两个replicas。
消息的产生和消费
两个终端分别打开producer和consumer进行测试
下面使用perf命令来测试几个topic的性能,需要先下载kafka-perf_2.10-0.8.1.1.jar,并拷贝到kafka/libs下面。
50W条消息,每条1000字节,batch大小1000,topic为debugo01,4个线程(message size设置太大需要调整相关参数,否则容易OOM)。只用了13秒完成,kafka在多分区支持下吞吐量是非常给力的。
同样的参数测试debugo02, 由于但分区加复制(replicas-factor=3),用时39秒。所以,适当加大partition数量和broker相关线程数量会极大的提高性能。
同样的参数测试debugo03,用时30秒。
同理,测试comsumer的性能。






欢迎光临 黑马程序员技术交流社区 (http://bbs.itheima.com/) 黑马程序员IT技术论坛 X3.2