方法:<span class="MathJax" id="MathJax-Element-722-Frame" tabindex="0" data-mathml="k" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">kk近邻法
适用问题:多类分类,回归
模型特点:特征空间,样本点
模型类型:判别模型
<span class="MathJax" id="MathJax-Element-808-Frame" tabindex="0" data-mathml="k" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">kk近邻法是一种基本分类与回归方法。思想是给定一个训练数据集,其中样本类别给定,分类时,对新的样本,根据其<span class="MathJax" id="MathJax-Element-809-Frame" tabindex="0" data-mathml="k" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">kk个最近邻的训练实例的类别,通过多数表决等方式进行预测。
引用百度来的一张图,直观理解下k近邻算法:
目标是判断中心绿色点的类别,当<span class="MathJax" id="MathJax-Element-810-Frame" tabindex="0" data-mathml="k=3" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">k=3k=3时,所形成的圆内红色三角形数量最多,则目标为红色类,当<span class="MathJax" id="MathJax-Element-811-Frame" tabindex="0" data-mathml="k=5" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">k=5k=5时,所形成的圆内蓝色正方形最多,则目标为蓝色类,这就是<span class="MathJax" id="MathJax-Element-812-Frame" tabindex="0" data-mathml="k" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">kk近邻算法。
<span class="MathJax" id="MathJax-Element-813-Frame" tabindex="0" data-mathml="k" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">kk近邻的三要素是:<span class="MathJax" id="MathJax-Element-814-Frame" tabindex="0" data-mathml="k" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">kk值得选择、距离度量及分类决策规则。
本文介绍<span class="MathJax" id="MathJax-Element-815-Frame" tabindex="0" data-mathml="k" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">kk近邻算法,三要素及代码实现,kd树和搜索kd树的算法将在另一片博文中介绍。
二、k近邻算法算法:输入:训练数据集
输出:实例<span class="MathJax" id="MathJax-Element-1186-Frame" tabindex="0" data-mathml="x" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">xx所属的类<span class="MathJax" id="MathJax-Element-1187-Frame" tabindex="0" data-mathml="y." role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">y.y.
算法步骤:在<span class="MathJax" id="MathJax-Element-4186-Frame" tabindex="0" data-mathml="Nk(x)" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">Nk(x)Nk(x)中根据分类规则(如多数表决)决定<span class="MathJax" id="MathJax-Element-4187-Frame" tabindex="0" data-mathml="x" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">xx的类别<span class="MathJax" id="MathJax-Element-4188-Frame" tabindex="0" data-mathml="y" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">yy:
<span class="MathJax" id="MathJax-Element-4190-Frame" tabindex="0" data-mathml="I" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">II为指示函数,即当<span class="MathJax" id="MathJax-Element-4191-Frame" tabindex="0" data-mathml="Yi=ci" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">Yi=ciYi=ci时,<span class="MathJax" id="MathJax-Element-4192-Frame" tabindex="0" data-mathml="I=1" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">I=1I=1,否则为0. 当<span class="MathJax" id="MathJax-Element-4193-Frame" tabindex="0" data-mathml="k=1" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">k=1k=1时,称为最近邻算法。
下面我们介绍k近邻法的三个基本要素:距离度量、k值的选择和分类决策规则的确定。
3.1 距离度量特征空间中两个实例点的距离是两个实例点相似程度的反映,一般使用的是欧氏距离,也可以使其他距离,如<span class="MathJax" id="MathJax-Element-4851-Frame" tabindex="0" data-mathml="LP" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">LPLP距离和Minkowski距离。
下面是每个距离的定义:
设特征空间<span class="MathJax" id="MathJax-Element-4852-Frame" tabindex="0" data-mathml="X" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">XX是<span class="MathJax" id="MathJax-Element-4853-Frame" tabindex="0" data-mathml="n" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">nn维实数向量空间<span class="MathJax" id="MathJax-Element-4854-Frame" tabindex="0" data-mathml="Rn," role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">Rn,Rn, <span class="MathJax" id="MathJax-Element-4855-Frame" tabindex="0" data-mathml="xi" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">xixi,<span class="MathJax" id="MathJax-Element-4856-Frame" tabindex="0" data-mathml="xj∈X," role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">xj∈X,xj∈X, <span class="MathJax" id="MathJax-Element-4857-Frame" tabindex="0" data-mathml="xi=(xi(1),xi(2),⋯,xi(n))T" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">xi=(xi(1),xi(2),⋯,xi(n))Txi=(xi(1),xi(2),⋯,xi(n))T,<span class="MathJax" id="MathJax-Element-4858-Frame" tabindex="0" data-mathml="xj=(xj(1),xj(2),⋯,xj(n))T," role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">xj=(xj(1),xj(2),⋯,xj(n))T,xj=(xj(1),xj(2),⋯,xj(n))T, <span class="MathJax" id="MathJax-Element-4859-Frame" tabindex="0" data-mathml="xi,xj" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">xi,xjxi,xj的<span class="MathJax" id="MathJax-Element-4860-Frame" tabindex="0" data-mathml="Lp" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">LpLp距离为:
这里<span class="MathJax" id="MathJax-Element-4862-Frame" tabindex="0" data-mathml="p≥1" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">p≥1p≥1.当<span class="MathJax" id="MathJax-Element-4863-Frame" tabindex="0" data-mathml="p=2" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">p=2p=2时,称为欧氏距离,即
当<span class="MathJax" id="MathJax-Element-4865-Frame" tabindex="0" data-mathml="p=1" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">p=1p=1时 ,称为曼哈顿距离,即
当<span class="MathJax" id="MathJax-Element-4867-Frame" tabindex="0" data-mathml="p=∞" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">p=∞p=∞时,取各个坐标距离的最大值,即
k值的选择会对结果产生直接的影响。
如果选择较小的k值,就相当于用较小的邻域中的训练实例进行预测,近似误差会减小,只有输入实例较近的训练实例才会对预测结果起作用,但确定是估计误差会增大,因为预测结果会对邻近的实例点非常敏感,如果邻近的实例点恰巧是噪声,预测结果就会出错。<span class="MathJax" id="MathJax-Element-5360-Frame" tabindex="0" data-mathml="k" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">kk值的减小意味着模型变得复杂,容易产生过拟合(这句话可以理解为<span class="MathJax" id="MathJax-Element-5361-Frame" tabindex="0" data-mathml="k" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">kk增大,邻域边界相对更平滑,<span class="MathJax" id="MathJax-Element-5362-Frame" tabindex="0" data-mathml="k" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">kk减小,邻域边界更弯曲,更参差不平,更复杂,可以画图帮助理解)。
如果选择较大的k值,就相当于用较大邻域中的训练实例进行预测,其优点是可以减少学习的估计误差,缺点是学习的近似误差会增大,这时与输入实例较远的训练实例也会起预测作用,使预测发生错误,<span class="MathJax" id="MathJax-Element-5363-Frame" tabindex="0" data-mathml="k" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">kk值的增大就意味着整体的模型变得简单。
当<span class="MathJax" id="MathJax-Element-5364-Frame" tabindex="0" data-mathml="k=N" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">k=Nk=N是,无论输入什么,都将简单预测为最多实例点的类,是不可取得。
在应用中,<span class="MathJax" id="MathJax-Element-5365-Frame" tabindex="0" data-mathml="k" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">kk值一般去一个比较小的数值,采用交叉验证选取最优<span class="MathJax" id="MathJax-Element-5366-Frame" tabindex="0" data-mathml="k" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">kk值。
3.3 分类决策规则<span class="MathJax" id="MathJax-Element-6302-Frame" tabindex="0" data-mathml="k" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">kk近邻法中的分类决策规则一般采用多数表决,即由输入实例的<span class="MathJax" id="MathJax-Element-6303-Frame" tabindex="0" data-mathml="k" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">kk个邻近的训练实例中的多数类决定。
多数表决规则等价于经验风险最小化,解释如下:如果分类的损失函数为0-1损失函数,分类函数为
KNN算法不仅可以用于分类,还可以用于回归。通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值,如权值与距离成反比。
优点:1.简单,易于理解,易于实现,无需估计参数,无需训练;
2. 适合对稀有事件进行分类;
3.特别适合于多分类问题(multi-modal,对象具有多个类别标签), kNN比SVM的表现要好。
1.该算法在分类时有个主要的不足是,当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的<span class="MathJax" id="MathJax-Element-6319-Frame" tabindex="0" data-mathml="k" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">kk个邻居中大容量类的样本占多数。 该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果。
2.该方法的另一个不足之处是计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的<span class="MathJax" id="MathJax-Element-6320-Frame" tabindex="0" data-mathml="k" role="presentation" style="box-sizing: border-box; outline: 0px; display: inline; line-height: normal; font-size: 16px; text-align: left; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; word-break: break-all; position: relative;">kk个最近邻点。
3.可理解性差,无法给出像决策树那样的规。
五、代码实现sklearn有现有的包可以调用,具体如下:
>>> X = [[0], [1], [2], [3]]>>> y = [0, 0, 1, 1]>>> from sklearn.neighbors import KNeighborsClassifier>>> neigh = KNeighborsClassifier(n_neighbors=3)>>> neigh.fit(X, y) KNeighborsClassifier(...)>>> print(neigh.predict([[1.1]]))[0]>>> print(neigh.predict_proba([[0.9]]))[[ 0.66666667 0.33333333]]kd树和kd树的最近邻搜索将单独作为一篇文章介绍。
欢迎光临 黑马程序员技术交流社区 (http://bbs.itheima.com/) | 黑马程序员IT技术论坛 X3.2 |