黑马程序员技术交流社区
标题: Day7_Day8 [打印本页]
作者: 养只猫叫冰棍儿 时间: 2018-11-26 10:51
标题: Day7_Day8
本帖最后由 养只猫叫冰棍儿 于 2018-11-26 11:18 编辑
Day07
线程间通信:
多个线程在处理同一个资源, 但是多个线程的处理动作却不相同(线程的任务不同, 需要协调合作)
为什么要进行线程间通信:
通常是竞争关系: 多个线程并发执行时, 在默认情况下CPU是随机切换线程的.
有时也"需要合作": 当我们需要多个线程来共同完成一件任务, 并且我们希望他们有规律的执行, 那么多线程之间需要一些协调通信, 以此来帮我们达到多线程共同操作一份数据
如何实现线程间通信:
"等待唤醒机制"
等待唤醒机制:
wait/notify, 就是"线程间的一种协作机制", 用于实现线程间通信
等待唤醒中的方法
java.lang.Object类:
// 成员方法 (只能通过"锁对象"调用)
void notify(): 随机唤醒在同一个锁对象上的某一个处于等待状态的线程
void notifyAll(): 唤醒所有在同一个锁对象上处于等待状态的线程
void wait(): 让当前线程处于无限等待状态, 同时释放锁
wait和notify/notifyAll的执行原理:
wait:
线程不再活动, 不再参与调度, 进入 wait set 中, 因此不会浪费 CPU 资源, 也不会去竞争锁, 这时的线程状态即是"WAITING". 它还要等着别的线程执行"通知(notify)", 让在锁对象上等待的线程从 wait set 中释放出来, 重新进入到调度队列(ready queue)中
notify/notifyAll:
哪怕只通知了一个等待的线程, 被通知线程也不能立即恢复执行, 因为它当初中断的地方是在同步块内, 而
此刻它已经不持有锁, 所以它需要"再次尝试去获取锁"(很可能面临其它线程的竞争), 成功后才能在当初调用 wait() 之后的地方恢复执行
总结如下:
如果能获取锁, 线程就从"WAITING"状态变成"RUNNABLE"状态
否则, 从 wait set 出来, 又进入entry set, 线程就从"WAITING"状态又变成"BLOCKED"状态
调用 wait() 和 notify() 需要注意的细节:
1. wait() 与 notify() 必须要由"同一个锁对象"调用
因为对应的锁对象可以通过 notify() 唤醒使用同一个锁对象调用的 wait() 后的线程
2. wait() 与 notify() 是属于Object类的方法
因为锁对象可以是任意对象, 而任意对象的所属类都是继承了Object类的
3. wait() 与 notify() 必须要在"同步代码块"或者是"同步方法"中使用
因为必须要通过锁对象调用这2个方法
普通创建线程方式的缺点:
"创建"线程和"销毁"线程都是比较占用内存和CPU的操作.
对于一些数量多, 执行时间短的任务, 频繁的创建和销毁线程来执行, 会降低程序运行效率.
线程池:
一个容纳多个线程的容器(集合)
线程池可以解决的问题:
其中的线程可以反复使用, 省去了频繁创建线程对象的操作, 无需反复创建线程而消耗过多资源
线程池的工作原理:
提前创建好多个线程对象, 放在集合中. 多个任务来了反复使用这些线程对象来执行
java.util.concurrent.Executors类: 线程池工厂类, 用于创建和管理线程池
// 静态方法:
static ExecutorService newFixedThreadPool(int nThreads): 创建固定数量线程的线程池(常用)
java.util.concurrent.ExecutorService接口: 真正执行任务的线程池服务
// 成员方法:
Future submit(Runnable task): 提交一个Runnable任务
void shutdown(): 通知线程执行完任务后关闭. 如不调此方法, 则线程执行完任务后仍在运行以便重复使用
线程池的创建和使用步骤:
1. 使用Executors的静态方法 newFixedThreadPool(int nThreads) 创建线程池ExecutorService
2. 创建一个任务类, 实现Runnable接口, 重写run()方法
3. 调用ExecutorService对象的 submit(Runnable task) 方法, 传递任务给线程池, 执行任务
4. 调用ExecutorService对象的 shutdown() 方法, 销毁线程池 (不建议执行)
函数式:
在数学中, 函数就是有输入量, 输出量的一套计算方案, 也就是"传入什么东西, 得到什么结果"
y = f(x)
面向对象: 强调"用哪个对象的哪个方法"来做事 (注重语法形式: 继承 方法重写)
函数式: 强调"传入的参数 和 要执行的代码"
函数式编程的好处:
简化代码编写 (使用 λ Lambda表达式, 简化匿名内部类的代码)
Lambda表达式的3个部分:
1. 一些参数 ()
接口中抽象方法的参数列表. 没参数就空着; 有参数就写, 多个参数用逗号分隔
2. 一个箭头 ->
将参数传递给方法体
3. 一段代码 {}
重写接口抽象方法的方法体
格式:
// 写成多行
(数据类型 变量名, 数据类型 变量名) -> {
一些重写方法的代码
一些重写方法的代码
...
}
// 如果代码只有一行, 也可以合并写成一行
(参数列表) -> {一些重写方法的代码}
函数式接口:
函数式接口: "有且仅有一个抽象方法的接口"
但函数式接口对于 哪些方法算作抽象方法 有特殊规定:
1. 有方法体的方法"不算作"抽象方法, 如默认方法, 静态方法, 私有方法
2. 如果一个抽象方法 与 java.lang.Object类中的方法 定义相同的, 也"不算作"抽象方法
因为任何实现本接口的实现类, 都会直接或间接继承java.lang.Object类的public的方法, 所以在创建实现类时其实不用重写该抽象方法, 也就不算作抽象方法
Lambda表达式的省略原则:
"可推导的都可省略" (凡是能根据前后代码能猜测出来的代码, 都可以省略不写)
可以省略的部分:
1. (参数列表): 参数"类型"可以省略 (a, b) -> {}
2. (参数列表): 如果参数只有1个, 则"类型"和"小括号"都可以省略 a -> sout(a)
3. {一些代码}: 如果只有一条代码, 则"大括号", "return", "分号"都可以"一起省略"
*函数式接口:
函数式接口: "有且仅有一个抽象方法的接口"
但函数式接口对于 哪些方法算作抽象方法 有特殊规定:
1. 有方法体的方法"不算作"抽象方法, 如默认方法, 静态方法, 私有方法
2. 如果一个抽象方法 与 java.lang.Object类中的方法 定义相同的, 也"不算作"抽象方法
因为任何实现本接口的实现类, 都会直接或间接继承java.lang.Object类的public的方法, 所以在创建实现类时其实不用重写该抽象方法, 也就不算作抽象方法
Lambda表达式的使用前提:
1. Lambda只能用于接口, 且"接口中有且仅有一个抽象方法"(也称为"函数式接口") 普通类, 抽象类不能用
2. 使用Lambda必须具有上下文推断
接口中只能有一个抽象方法, 才能推断出来重写的是这个抽象方法
简而言之: 参数类型必须是函数式接口
比如以下构造方法
Thread(Runnable r): 该构造方法的参数类型是Runnable
// Runnable接口中, 有且仅有一个抽象方法, 该接口就是一个函数式接口, 可以使用Lambda表达式
public interface Runnable {
public abstract void run();
}
// Comparator接口中, 有且仅有一个抽象方法
public interface Comparator<T> {
// 这是该接口中有且仅有的一个抽象方法
int compare(T o1, T o2);
// 该方法与Object类中equals定义相同, 所以不算抽象方法
boolean equals(Object obj);
// 一些default方法, 有方法体, 不算抽象方法
// 一些静态方法, 有方法体, 不算抽象方法
}
// 我们今天自己定义的接口, 也满足函数式接口的要求
public interface Cook {
void makeFood();
}
// Lambda省略格式
new Thread(() -> System.out.println(Thread.currentThread().getName() + "新线程创建了")).start();
// Lambda省略格式
invokeCook(()-> System.out.println("Lambda标准格式: 吃饭啦"));
// Lambda省略格式
Arrays.sort(arr, (o1, o2) -> o1.getAge() - o2.getAge());
// Lambda省略格式
invokeCalc(120, 130, (a, b)->a + b);
Day08
File类:
IO流, 操作磁盘上的文件(文件夹/目录)
递归:
方法自己调用自己
思想: 大问题解决不了 = 可以解决的一个小问题 + 无法解决的另一个小问题
无法解决的另一个小问题 = 可以解决的一个小问题 + 无法解决的另一个小问题
...
无法解决的另一个小问题 -> 可以解决的小问题
java.io.File类: "文件"和"目录"的路径名的抽象表现形式, 主要用于文件和目录的创建, 查找和删除等操作
private String path;
"D:\itheima-teach\sjz-javaee-10\s2-进阶\08\avi\02_File类的概述.avi"
"D:\itheima-teach\sjz-javaee-10\s2-进阶\"
String -> File
Input输入 Output输出
我们可以对File进行的操作:
创建文件/目录
删除文件/目录
获取文件/目录
判断文件/目录是否存在
对目录进行遍历
获取文件的大小
重要英文单词的含义: (起变量名时会用到)
file: 文件
directory: 目录
path: 路径
java.io.File类: 文件和目录的路径名的抽象表现形式, 主要用于文件和目录的创建, 查找和删除等操作
// 静态成员变量
static String pathSeparator: 路径分隔符的字符串形式
static char pathSeparatorChar: 路径分隔符的char形式
Windows系统是 分号;
Linux系统是 冒号:
static String separator: 文件名称分隔符的字符串形式
static char separatorChar: 文件名称分隔符的char形式
Window系统是 反斜杠\
Linux系统是 正斜杠/
绝对路径:
以盘符开始的路径
如: "D:\\a\\hi.txt"
相对路径:
不以盘符开始的简化路径. IDEA项目, 相对于项目的根目录
如: "a\\1.mp3", "123.txt"
"d:\\t"
注意事项:
1. 路径不区分大小写 (在Windows系统中不区分大小写, Linux, Mac区分)
2. 路径一般写成字符串, 而字符串中一个\是转义, 所以要写两个\\
java.io.File类: 文件和目录的路径名的抽象表现形式, 主要用于文件和目录的创建, 查找和删除等操作
// 构造方法(创建了File对象, 并将其指向该路径. 不会真正在磁盘上创建这个文件)
new File("D:\\a\\hi.txt")
"D:\\a\\b\\c\\hi.txt"
"D:\\a\\" "b\\c\\hi.txt"
File File(String pathname): 根据 路径字符串 封装一个File对象
File File(String parent, String child): 根据 父路径字符串 和 子路径字符串 封装File对象
File File(File parent, String child): 根据 父路径的File对象 和 子路径 封装File对象
java.io.File类
// 常用获取方法
String getAbsolutePath(): 返回此File的绝对路径名字符串
String getPath(): 获取File对象的封装路径 (创建对象时传入的路径)
String getName(): 获取File对象的文件名或目录名 d:\a\b\c\aaa.txt
long length(): 获取File表示的"文件"大小的字节byte数 (不能获取目录的大小)
java.io.File类
// 常用判断方法
boolean exists(): 判断File对象代表的文件或目录是否实际存在
boolean isDirectory(): 判断File表示的是否为目录
boolean isFile(): 判断File表示的是否为文件
java.io.File类
// 常用创建删除方法
boolean createNewFile(): 当文件不存在时, 创建一个新的空文件
false: 路径已经存在(无论文件还是目录)
抛IO异常: 写的路径不符合逻辑 (Y:\\a.txt\dsfsd)
boolean delete(): 删除由此File表示的文件或目录.
删除目录时: 必须是空目录
boolean mkdir(): 创建File表示的目录 "d:\\a\\b\\c\\我的目录"
false: 1. 路径已经存在(无论文件还是目录) 2. 写的路径不符合逻辑 (Y:\\a.txt\dsfsd)
boolean mkdirs(): 创建File表示的多级目录 "d:\\a\\b\\c\\我的目录"
false: 1. 路径已经存在(无论文件还是目录) 2. 写的路径不符合逻辑 (Y:\\a.txt\ds)
java.io.File类
// 常用获取目录中内容的方法
String[] list(): 获取当前File目录下的所有子文件或目录的名字数组
File[] listFiles(): 获取当前File目录中的所有子文件或目录的File对象数组
注意:
只能用表示目录的File对象调用
用文件的File对象, 或者路径不存在, 调用会报错
递归思想:
遇到一个问题时, 将该问题拆解成可以解决的小问题, 如果解决不了, 继续拆解为更小的问题. 如果小问题解决了, 大问题也就能够解决
Java中实现递归的方式:
方法内部调用方法自己 (所以必须定义方法)
递归的分类:
直接递归: 方法自己调用方法
间接递归: A方法调用B方法, B方法调用C方法, C方法调用A方法
递归时的注意事项:
1. 递归要有限定条件(出口), 保证递归能够停止(就是在某种情况下方法不再调用自己), 否则会栈内存溢出
2. 递归次数不能太多, 否则会栈内存溢出
3. 构造方法不能递归
递归的使用前提:
调用方法时, 方法的主体不变, 但每次传递的参数值不同, 可以使用递归
java.io.File类: Filter过滤器
File[] listFiles(FileFilter filter): 返回文件过滤器过滤后的File对象数组
File[] listFiles(FilenameFilter filter): 返回文件过滤器过滤后的File对象数组
java.io.FileFilter接口: 用于File对象的过滤器
boolean accept(File pathName): true则会将参数的File对象加入返回的File[], false则不加入
java.io.FilenameFilter接口: 将File对象拆分为父路径和子路径来判断的过滤器
boolean accept(File dir, String name): true则会将参数的File对象加入返回的File[], false则不加入
dir: 被找到的文件所在的目录 (父路径)
name: 文件的名称 (子路径)
欢迎光临 黑马程序员技术交流社区 (http://bbs.itheima.com/) |
黑马程序员IT技术论坛 X3.2 |