黑马程序员技术交流社区

标题: 【济南中心】递归思想解析 [打印本页]

作者: 大山哥哥    时间: 2018-12-26 22:50
标题: 【济南中心】递归思想解析
    递归是一种应用非常广泛的算法(或者编程技巧)。我们在很多数据结构和算法的编码实现都要用到递归,比如 DFS 深度优先搜索、前中后序二叉树遍历等等。所以,搞懂递归非常重要,否则,学习复杂一些的数据结构和算法学起来就会比较吃力。
    我们先用一个生活中的小例子来解释下递归在生活中的应用.周末你带着女朋友去电影院看电影,女朋友问你,咱们现在坐在第几排啊?电影院里面太黑了,看不清,没法数,现在你怎么办?这肯定难不倒作为程序员的我们,递归就开始排上用场了。于是你就问前面一排的人他是第几排,你想只要在他的数字上加一,就知道自己在哪一排了。但是,前面的人也看不清啊,所以他也问他前面的人。就这样一排一排往前问,直到问到第一排的人,说我在第一排,然后再这样一排一排再把数字传回来。直到你前面的人告诉你他在哪一排,于是你就知道答案了。这就是一个非常标准的递归求解问题的分解过程,去的过程叫“递”,回来的过程叫“归”。基本上,所有的递归问题都可以用递推公式来表示。刚刚这个生活中的例子,我们用递推公式将它表示出来就是这样的:
[AppleScript] 纯文本查看 复制代码
f(n)=f(n-1)+1 其中,f(1)=1

f(n) 表示你想知道自己在哪一排,f(n-1) 表示前面一排所在的排数,f(1)=1 表示第一排的人知道自己在第一排。有了这个递推公式,我们就可以很轻松地将它改为递归代码,如下:
[AppleScript] 纯文本查看 复制代码
int f(int n) {
  if (n == 1) return 1;
  return f(n-1) + 1;
}


我们这是用生活中的一个小案例解释了一下什么是递归.那么究竟怎样的问题我们能用递归的思想来解决呢?这里我总结了三个条件,只要满足了这三个条件就可以用递归思想来解决这个问题.这三个条件分别是:
1. 一个问题的解可以分解为几个子问题的解
何为子问题?子问题就是数据规模更小的问题。比如,前面讲的电影院的例子,你要知道,“自己在哪一排”的问题,可以分解为“前一排的人在哪一排”这样一个子问题。
2. 这个问题与分解之后的子问题,除了数据规模不同,求解思路完全一样
比如电影院那个例子,你求解“自己在哪一排”的思路,和前面一排人求解“自己在哪一排”的思路,是一模一样的。
3. 存在递归终止条件
把问题分解为子问题,把子问题再分解为子子问题,一层一层分解下去,不能存在无限循环,这就需要有终止条件。
还是电影院的例子,第一排的人不需要再继续询问任何人,就知道自己在哪一排,也就是 f(1)=1,这就是递归的终止条件。

那么如何编写递归的代码呢?
我个人认为,最重要的时候写出递推公式,只要写出了递推公式,找出结束条件,剩下的就是将递推公式转成代码就可以了.
下面我们通过一个小案例来一块分析一下,如果把这个问题,用代码的方式写出来.
假如这里有 n 个台阶,每次你可以跨 1 个台阶或者 2 个台阶,请问走这 n 个台阶有多少种走法?如果有 7 个台阶,你可以 2,2,2,1 这样子上去,也可以 1,2,1,1,2 这样子上去,总之走法有很多,那如何用编程求得总共有多少种走法呢?
我们仔细想下,实际上,可以根据第一步的走法把所有走法分为两类,第一类是第一步走了 1 个台阶,另一类是第一步走了 2 个台阶。所以 n 个台阶的走法就等于先走 1 阶后,n-1 个台阶的走法 加上先走 2 阶后,n-2 个台阶的走法。用公式表示就是:
[AppleScript] 纯文本查看 复制代码
f(n) = f(n-1)+f(n-2)

有了递推公式,递归代码基本上就完成了一半。我们再来看下终止条件。当有一个台阶时,我们不需要再继续递归,就只有一种走法。所以 f(1)=1。这个递归终止条件足够吗?我们可以用 n=2,n=3 这样比较小的数试验一下。
n=2 时,f(2)=f(1)+f(0)。如果递归终止条件只有一个 f(1)=1,那 f(2) 就无法求解了。所以,我们可以把 f(2)=2 作为一种终止条件,表示走 2 个台阶,有两种走法,一步走完或者分两步来走。
所以,递归终止条件就是 f(1)=1,f(2)=2。这个时候,你可以再拿 n=3,n=4 来验证一下,这个终止条件是否足够并且正确。
我们把递归终止条件和刚刚得到的递推公式放到一起就是这样的:
[AppleScript] 纯文本查看 复制代码
f(1) = 1;
f(2) = 2;
f(n) = f(n-1)+f(n-2)

有了这个公式,我们转化成递归代码就简单多了。最终的递归代码是这样的:
[AppleScript] 纯文本查看 复制代码
int f(int n) {
  if (n == 1) return 1;
  if (n == 2) return 2;
  return f(n-1) + f(n-2);
}

写递归代码的关键就是找到如何将大问题分解为小问题的规律,并且基于此写出递推公式,然后再推敲终止条件,最后将递推公式和终止条件翻译成代码.
递归虽然好用,但是在使用的时候还是要特别小心,否则很容易堆栈溢出.
在实际的软件开发中,编写递归代码时,我们会遇到很多问题,比如堆栈溢出。而堆栈溢出会造成系统性崩溃,后果会非常严重。为什么递归代码容易造成堆栈溢出呢?我们又该如何预防堆栈溢出呢?
函数调用会使用栈来保存临时变量。每调用一个函数,都会将临时变量封装为栈帧压入内存栈,等函数执行完成返回时,才出栈。系统栈或者虚拟机栈空间一般都不大。如果递归求解的数据规模很大,调用层次很深,一直压入栈,就会有堆栈溢出的风险。
[AppleScript] 纯文本查看 复制代码
Exception in thread "main" java.lang.StackOverflowError

那么,如何避免出现堆栈溢出呢?
我们可以通过在代码中限制递归调用的最大深度的方式来解决这个问题。递归调用超过一定深度(比如 1000)之后,我们就不继续往下再递归了,直接返回报错。还是电影院那个例子,我们可以改造成下面这样子,就可以避免堆栈溢出了。
[AppleScript] 纯文本查看 复制代码
// 全局变量,表示递归的深度。
int depth = 0;

int f(int n) {
  ++depth;
  if (depth > 1000) throw exception;
  
  if (n == 1) return 1;
  return f(n-1) + 1;
}


但这种做法并不能完全解决问题,因为最大允许的递归深度跟当前线程剩余的栈空间大小有关,事先无法计算。如果实时计算,代码过于复杂,就会影响代码的可读性。所以,如果最大深度比较小,比如 10、50,就可以用这种方法,否则这种方法并不是很实用。












欢迎光临 黑马程序员技术交流社区 (http://bbs.itheima.com/) 黑马程序员IT技术论坛 X3.2