黑马程序员技术交流社区

标题: 【深圳校区】Numpy array数据的增、删、改、查实例 [打印本页]

作者: 柠檬leung不酸    时间: 2018-12-27 10:31
标题: 【深圳校区】Numpy array数据的增、删、改、查实例
本帖最后由 柠檬leung不酸 于 2018-12-27 10:34 编辑

准备工作
增、删、改、查的方法有很多很多种,这里只展示出常用的几种。

>>> import numpy as np
>>> a = np.array([[1,2],[3,4],[5,6]])#创建3行2列二维数组。
>>> a
array([[1, 2], [3, 4], [5, 6]])
>>> a = np.zeros(6)#创建长度为6的,元素都是0一维数组
>>> a = np.zeros((2,3))#创建3行2列,元素都是0的二维数组
>>> a = np.ones((2,3))#创建3行2列,元素都是1的二维数组
>>> a = np.empty((2,3)) #创建3行2列,未初始化的二维数组
>>> a = np.arange(6)#创建长度为6的,元素都是0一维数组array([0, 1, 2, 3, 4, 5])
>>> a = np.arange(1,7,1)#结果与np.arange(6)一样。第一,二个参数意思是数值从1〜6,不包括7.第三个参数表步长为1.
a = np.linspace(0,10,7) # 生成首位是0,末位是10,含7个数的等差数列[ 0.   1.66666667 3.33333333 5.   6.66666667 8.33333333 10.  ]
a = np.logspace(0,4,5)#用于生成首位是10**0,末位是10**4,含5个数的等比数列。[ 1.00000000e+00 1.00000000e+01 1.00000000e+02 1.00000000e+03 1.00000000e+04]



>>> a = np.array([[1,2],[3,4],[5,6]])
>>> b = np.array([[10,20],[30,40],[50,60]])
>>> np.vstack((a,b))
array([[ 1, 2],
  [ 3, 4],
  [ 5, 6],
  [10, 20],
  [30, 40],
  [50, 60]])
>>> np.hstack((a,b))
array([[ 1, 2, 10, 20],[ 3, 4, 30, 40],[ 5, 6, 50, 60]])
不同维数的数组直接相加显然是不允许的。但是可以用一个n行列向量和一个m列行向量构造出一个n×m矩阵

>>> a = np.array([[1],[2]])
>>> a
array([[1], [2]])
>>> b=([[10,20,30]])#生成一个list,注意,不是np.array。
>>> b
[[10, 20, 30]]
>>> a+b
array([[11, 21, 31], [12, 22, 32]])
>>> c = np.array([10,20,30])
>>> c
array([10, 20, 30])
>>> c.shape
(3,)
>>> a+c
array([[11, 21, 31], [12, 22, 32]])




>>> a
array([[1, 2],[3, 4],[5, 6]])
>>> a[0] # array([1, 2])
>>> a[0][1]#2
>>> a[0,1]#2
>>> b = np.arange(6)#array([0, 1, 2, 3, 4, 5])
>>> b[1:3]#右边开区间array([1, 2])
>>> b[:3]#左边默认为 0array([0, 1, 2])
>>> b[3:]#右边默认为元素个数array([3, 4, 5])
>>> b[0:4:2]#下标递增2array([0, 2])
NumPy的where函数使用



np.where(condition, x, y),第一个参数为一个布尔数组,第二个参数和第三个参数可以是标量也可以是数组。


cond = numpy.array([True,False,True,False])
a = numpy.where(cond,-2,2)# [-2 2 -2 2]
cond = numpy.array([1,2,3,4])
a = numpy.where(cond>2,-2,2)# [ 2 2 -2 -2]
b1 = numpy.array([-1,-2,-3,-4])
b2 = numpy.array([1,2,3,4])
a = numpy.where(cond>2,b1,b2) # 长度须匹配# [1,2,-3,-4]




>>> a = np.array([[1,2],[3,4],[5,6]])
>>> a[0] = [11,22]#修改第一行数组[1,2]为[11,22]。
>>> a[0][0] = 111#修改第一个元素为111,修改后,第一个元素“1”改为“111”。
  
>>> a = np.array([[1,2],[3,4],[5,6]])
>>> b = np.array([[10,20],[30,40],[50,60]])
>>> a+b #加法必须在两个相同大小的数组键间运算。
array([[11, 22], [33, 44], [55, 66]])
不同维数的数组直接相加显然是不允许的。但是可以用一个n行列向量和一个m列行向量构造出一个n×m矩阵


>>> a = np.array([[1],[2]])
>>> a
array([[1],[2]])
>>> b=([[10,20,30]])#生成一个list,注意,不是np.array。
>>> b
[[10, 20, 30]]
>>> a+b
array([[11, 21, 31],[12, 22, 32]])
>>> c = np.array([10,20,30])
>>> c
array([10, 20, 30])
>>> c.shape
(3,)
>>> a+c
array([[11, 21, 31],[12, 22, 32]])
数组和一个数字的加减乘除的运算,相当于一个广播,把这个运算广播到各个元素中去。


>>> a = np.array([[1,2],[3,4],[5,6]])
>>> a*2#相当于a中各个元素都乘以2.类似于广播。
array([[ 2, 4], [ 6, 8], [10, 12]])
>>> a**2
array([[ 1, 4], [ 9, 16], [25, 36]])
>>> a>3
array([[False, False], [False, True], [ True, True]])
>>> a+3
array([[4, 5], [6, 7], [8, 9]])
>>> a/2
array([[0.5, 1. ], [1.5, 2. ], [2.5, 3. ]])



方法一:

利用查找中的方法,比如a=a[0],操作完居后,a的行数只剩一行了。

>>> a = np.array([[1,2],[3,4],[5,6]])
>>> a[0]
array([1, 2])
方法二:

>>> a = np.array([[1,2],[3,4],[5,6]])
>>> np.delete(a,1,axis = 0)#删除a的第二行。
array([[1, 2], [5, 6]])
>>> np.delete(a,(1,2),0)#删除a的第二,三行。
array([[1, 2]])
>>> np.delete(a,1,axis = 1)#删除a的第二列。
array([[1], [3], [5]])


方法三:

先分割,再按切片a=a[0]赋值。

>>> a = np.array([[1,2],[3,4],[5,6]])
>>> np.hsplit(a,2)#水平分割(搞不懂,明明是垂直分割嘛?)
[array([[1],
  [3],
  [5]]), array([[2],
  [4],
  [6]])]
>>> np.split(a,2,axis = 1)#与np.hsplit(a,2)效果一样。
  
>>> np.vsplit(a,3)
[array([[1, 2]]), array([[3, 4]]), array([[5, 6]])]
>>> np.split(a,3,axis = 0)#与np.vsplit(a,3)效果一样。


转自 PythonTab
地址https://www.pythontab.com/html/2018/pythonweb_0604/1304.html






欢迎光临 黑马程序员技术交流社区 (http://bbs.itheima.com/) 黑马程序员IT技术论坛 X3.2