(1)如果不限制纸币的金额,那这种情况还适合用贪心算法么。比如1元,2元,3元,4元,8元,15元的纸币,用来支付K元,至少多少张纸币?
经我们分析,这种情况是不适合用贪心算法的,因为我们上面提供的贪心策略不是最优解。比如,纸币1元,5元,6元,要支付10元的话,按照上面的算法,至少需要1张6元的,4张1元的,而实际上最优的应该是2张5元的。
(2)如果限制纸币的张数,那这种情况还适合用贪心算法么。比如1元10张,2元20张,5元1张,用来支付K元,至少多少张纸币?
同样,仔细想一下,就知道这种情况也是不适合用贪心算法的。比如1元10张,20元5张,50元1张,那用来支付60元,按照上面的算法,至少需要1张50元,10张1元,而实际上使用3张20元的即可;
(3)所以贪心算法是一种在某种范围内,局部最优的算法。
2. 背包问题:
有一个背包,背包容量是W=150。有7个物品,每个物品有各自的重量和价值,每个物品有一件。要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。
物品 A B C D E F G
重量 35 30 60 50 40 10 25
价值 10 40 30 50 35 40 30
我们很容易想到使用贪心算法来解决这个问题,那我们考虑一下贪心策略:
(1)每次挑选价值最大的物品放入背包,得到的结果是否最优?
(2)每次挑选所占重量最小的物品放入背包,得到的结果是否最优?
(3)每次选取单位重量价值最大的物品,得到的结果是否最优?
值得注意的是,贪心算法并不是完全不可以使用,贪心策略一旦经过证明成立后,它就是一种高效的算法。但可惜的是,它需要证明后才能真正运用到题目的算法中。
而上面的3中贪心策略,都是无法成立的,即无法被证明的:
第一条和第二条类似,第三条,选取单位重量价值最大的物品:
以上问题使用贪心算法是解决不了的,而普通背包问题可以使用贪心算法来解决。这个问题是属于0-1背包问题,不过我们可以考虑使用动态规划来解决,那就是另一个问题了。
普通背包问题和0-1背包问题差不多,0-1背包的每件物品只有一件,而普通背包的每件物品数量是不止一件的,如果每件物品的数量是无限的,那这种称为完全背包问题;