黑马程序员技术交流社区

标题: 集合就是“由若干个确定的元素所构成的整体 [打印本页]

作者: ion    时间: 2019-9-26 13:45
标题: 集合就是“由若干个确定的元素所构成的整体
什么是集合(Collection)?集合就是“由若干个确定的元素所构成的整体”。例如,5只小兔构成的集合:

┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┐

│   (\_(\     (\_/)     (\_/)     (\_/)      (\(\   │
    ( -.-)    (•.•)     (>.<)     (^.^)     (='.')
│  C(")_(")  (")_(")   (")_(")   (")_(")   O(_")")  │

└ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┘
在数学中,我们经常遇到集合的概念。例如:

有限集合:

一个班所有的同学构成的集合;
一个网站所有的商品构成的集合;
...
无限集合:

全体自然数集合:1,2,3,……
有理数集合;
实数集合;
...
为什么要在计算机中引入集合呢?这是为了便于处理一组类似的数据,例如:

计算所有同学的总成绩和平均成绩;
列举所有的商品名称和价格;
……
在Java中,如果一个Java对象可以在内部持有若干其他Java对象,并对外提供访问接口,我们把这种Java对象称为集合。很显然,Java的数组可以看作是一种集合:

String[] ss = new String[10]; // 可以持有10个String对象
ss[0] = "Hello"; // 可以放入String对象
String first = ss[0]; // 可以获取String对象
既然Java提供了数组这种数据类型,可以充当集合,那么,我们为什么还需要其他集合类?这是因为数组有如下限制:

数组初始化后大小不可变;
数组只能按索引顺序存取。
因此,我们需要各种不同类型的集合类来处理不同的数据,例如:

可变大小的顺序链表;
保证无重复元素的集合;
...
Collection
Java标准库自带的java.util包提供了集合类:Collection,它是所有其他集合类的根接口。在Collection的基础上,Java的java.util包主要提供了以下三种类型的集合:

List:一种有序列表的集合,例如,按索引排列的Student的List;
Set:一种保证没有重复元素的集合,例如,所有无重复名称的Student的Set;
Map:一种通过键值(key-value)查找的映射表集合,例如,根据Student的name查找对应Student的Map。
Java集合的设计有几个特点:一是实现了接口和实现类相分离,例如,有序表的接口是List,具体的实现类有ArrayList,LinkedList等,二是支持泛型,我们可以限制在一个集合中只能放入同一种数据类型的元素,例如:

List<String> list = new ArrayList<>(); // 只能放入String类型
最后,Java访问集合总是通过统一的方式——迭代器(Iterator)来实现,它最明显的好处在于无需知道集合内部元素是按什么方式存储的。

由于Java的集合设计非常久远,中间经历过大规模改进,我们要注意到有一小部分集合类是遗留类,不应该继续使用:

Hashtable:一种线程安全的Map实现;
Vector:一种线程安全的List实现;
Stack:基于Vector实现的LIFO的栈。
还有一小部分接口是遗留接口,也不应该继续使用:

Enumeration<E>:已被Iterator<E>取代。
小结
Java的集合类定义在java.util包中,支持泛型,主要提供了3种集合类,包括List,Set和Map。Java集合使用统一的Iterator遍历,尽量不要使用遗留接口。
在集合类中,List是最基础的一种集合:它是一种有序链表。

List的行为和数组几乎完全相同:List内部按照放入元素的先后顺序存放,每个元素都可以通过索引确定自己的位置,List的索引和数组一样,从0开始。

数组和List类似,也是有序结构,如果我们使用数组,在添加和删除元素的时候,会非常不方便。例如,从一个已有的数组{'A', 'B', 'C', 'D', 'E'}中删除索引为2的元素:

┌───┬───┬───┬───┬───┬───┐
│ A │ B │ C │ D │ E │   │
└───┴───┴───┴───┴───┴───┘
              │   │
          ┌───┘   │
          │   ┌───┘
          │   │
          ▼   ▼
┌───┬───┬───┬───┬───┬───┐
│ A │ B │ D │ E │   │   │
└───┴───┴───┴───┴───┴───┘
这个“删除”操作实际上是把'C'后面的元素依次往前挪一个位置,而“添加”操作实际上是把指定位置以后的元素都依次向后挪一个位置,腾出来的位置给新加的元素。这两种操作,用数组实现非常麻烦。

因此,在实际应用中,需要增删元素的有序列表,我们使用最多的是ArrayList。实际上,ArrayList在内部使用了数组来存储所有元素。例如,一个ArrayList拥有5个元素,实际数组大小为6(即有一个空位):

size=5
┌───┬───┬───┬───┬───┬───┐
│ A │ B │ C │ D │ E │   │
└───┴───┴───┴───┴───┴───┘
当添加一个元素并指定索引到ArrayList时,ArrayList自动移动需要移动的元素:

size=5
┌───┬───┬───┬───┬───┬───┐
│ A │ B │   │ C │ D │ E │
└───┴───┴───┴───┴───┴───┘
然后,往内部指定索引的数组位置添加一个元素,然后把size加1:

size=6
┌───┬───┬───┬───┬───┬───┐
│ A │ B │ F │ C │ D │ E │
└───┴───┴───┴───┴───┴───┘
继续添加元素,但是数组已满,没有空闲位置的时候,ArrayList先创建一个更大的新数组,然后把旧数组的所有元素复制到新数组,紧接着用新数组取代旧数组:

size=6
┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐
│ A │ B │ F │ C │ D │ E │   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘
现在,新数组就有了空位,可以继续添加一个元素到数组末尾,同时size加1:

size=7
┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐
│ A │ B │ F │ C │ D │ E │ G │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘
可见,ArrayList把添加和删除的操作封装起来,让我们操作List类似于操作数组,却不用关心内部元素如何移动。

我们考察List<E>接口,可以看到几个主要的接口方法:

在末尾添加一个元素:void add(E e)
在指定索引添加一个元素:void add(int index, E e)
删除指定索引的元素:int remove(int index)
删除某个元素:int remove(Object e)
获取指定索引的元素:E get(int index)
获取链表大小(包含元素的个数):int size()
但是,实现List接口并非只能通过数组(即ArrayList的实现方式)来实现,另一种LinkedList通过“链表”也实现了List接口。在LinkedList中,它的内部每个元素都指向下一个元素:

        ┌───┬───┐   ┌───┬───┐   ┌───┬───┐   ┌───┬───┐
HEAD ──>│ A │ ●─┼──>│ B │ ●─┼──>│ C │ ●─┼──>│ D │   │
        └───┴───┘   └───┴───┘   └───┴───┘   └───┴───┘
我们来比较一下ArrayList和LinkedList:

ArrayList        LinkedList
获取指定元素        速度很快        需要从头开始查找元素
添加元素到末尾        速度很快        速度很快
在指定位置添加/删除        需要移动元素        不需要移动元素
内存占用        少        较大
通常情况下,我们总是优先使用ArrayList。

List的特点
使用List时,我们要关注List接口的规范。List接口允许我们添加重复的元素,即List内部的元素可以重复:

import java.util.ArrayList;
import java.util.List;
public class Main {
    public static void main(String[] args) {
        List<String> list = new ArrayList<>();
        list.add("apple"); // size=1
        list.add("pear"); // size=2
        list.add("apple"); // 允许重复添加元素,size=3
        System.out.println(list.size());
    }
}

Run
List还允许添加null:

import java.util.ArrayList;
import java.util.List;
public class Main {
    public static void main(String[] args) {
        List<String> list = new ArrayList<>();
        list.add("apple"); // size=1
        list.add(null); // size=2
        list.add("pear"); // size=3
        String second = list.get(1); // null
        System.out.println(second);
    }
}

Run
创建List
除了使用ArrayList和LinkedList,我们还可以通过List接口提供的of()方法,根据给定元素快速创建List:

List<Integer> list = List.of(1, 2, 5);
但是List.of()方法不接受null值,如果传入null,会抛出NullPointerException异常。

遍历List
和数组类型,我们要遍历一个List,完全可以用for循环根据索引配合get(int)方法遍历:

import java.util.List;
public class Main {
    public static void main(String[] args) {
        List<String> list = List.of("apple", "pear", "banana");
        for (int i=0; i<list.size(); i++) {
            String s = list.get(i);
            System.out.println(s);
        }
    }
}

Run
但这种方式并不推荐,一是代码复杂,二是因为get(int)方法只有ArrayList的实现是高效的,换成LinkedList后,索引越大,访问速度越慢。

所以我们要始终坚持使用迭代器Iterator来访问List。Iterator本身也是一个对象,但它是由List的实例调用iterator()方法的时候创建的。Iterator对象知道如何遍历一个List,并且不同的List类型,返回的Iterator对象实现也是不同的,但总是具有最高的访问效率。

Iterator对象有两个方法:boolean hasNext()判断是否有下一个元素,E next()返回下一个元素。因此,使用Iterator遍历List代码如下:

import java.util.Iterator;
import java.util.List;
public class Main {
    public static void main(String[] args) {
        List<String> list = List.of("apple", "pear", "banana");
        for (Iterator<String> it = list.iterator(); it.hasNext(); ) {
            String s = it.next();
            System.out.println(s);
        }
    }
}

Run
有童鞋可能觉得使用Iterator访问List的代码比使用索引更复杂。但是,要记住,通过Iterator遍历List永远是最高效的方式。并且,由于Iterator遍历是如此常用,所以,Java的for each循环本身就可以帮我们使用Iterator遍历。把上面的代码再改写如下:

import java.util.List;
public class Main {
    public static void main(String[] args) {
        List<String> list = List.of("apple", "pear", "banana");
        for (String s : list) {
            System.out.println(s);
        }
    }
}

Run
上述代码就是我们编写遍历List的常见代码。

实际上,只要实现了Iterator接口的集合类都可以直接用for each循环来遍历,Java编译器本身并不知道如何遍历集合对象,但它会自动把for each循环变成Iterator的调用。

List和Array转换
把List变为Array有三种方法,第一种是调用toArray()方法直接返回一个Object[]数组:

import java.util.List;
public class Main {
    public static void main(String[] args) {
        List<String> list = List.of("apple", "pear", "banana");
        Object[] array = list.toArray();
        for (Object s : array) {
            System.out.println(s);
        }
    }
}

Run
这种方法会丢失类型信息,所以实际应用很少。

第二种方式是给toArray(T[])传入一个类型相同的Array,List内部自动把元素复制到传入的Array中:

import java.util.List;
public class Main {
    public static void main(String[] args) {
        List<Integer> list = List.of(12, 34, 56);
        Integer[] array = list.toArray(new Integer[3]);
        for (Integer n : array) {
            System.out.println(n);
        }
    }
}

Run
注意到这个toArray(T[])方法的泛型参数<T>并不是List接口定义的泛型参数<E>,所以,我们实际上可以传入其他类型的数组,例如我们传入Number类型的数组,返回的仍然是Number类型:

import java.util.List;
public class Main {
    public static void main(String[] args) {
        List<Integer> list = List.of(12, 34, 56);
        Number[] array = list.toArray(new Number[3]);
        for (Number n : array) {
            System.out.println(n);
        }
    }
}

Run
但是,如果我们传入类型不匹配的数组,例如,String[]类型的数组,由于List的元素是Integer,所以无法放入String数组,这个方法会抛出ArrayStoreException。

如果我们传入的数组大小和List实际的元素个数不一致怎么办?根据List接口的文档,我们可以知道:

如果传入的数组不够大,那么List内部会创建一个新的刚好够大的数组,填充后返回;如果传入的数组比List元素还要多,那么填充完元素后,剩下的数组元素一律填充null。

实际上,最常用的是传入一个“恰好”大小的数组:

Integer[] array = list.toArray(new Integer[list.size()]);
最后一种更简洁的写法是通过List接口定义的T[] toArray(IntFunction<T[]> generator)方法:

Integer[] array = list.toArray(Integer[]::new);
这种函数式写法我们会在后续讲到。

反过来,把Array变为List就简单多了,通过List.of(T...)方法最简单:

Integer[] array = { 1, 2, 3 };
List<Integer> list = List.of(array);
对于JDK 11之前的版本,可以使用Arrays.asList(T...)方法把数组转换成List。

要注意的是,返回的List不一定就是ArrayList或者LinkedList,因为List只是一个接口,如果我们调用List.of(),它返回的是一个只读List:

import java.util.List;
public class Main {
    public static void main(String[] args) {
        List<Integer> list = List.of(12, 34, 56);
        list.add(999); // UnsupportedOperationException
    }
}

Run
对只读List调用add()、remove()方法会抛出UnsupportedOperationException。

练习
给定一组连续的整数,例如:10,11,12,……,20,但其中缺失一个数字,试找出缺失的数字:

import java.util.*;

public class Main {
    public static void main(String[] args) {
        // 构造从start到end的序列:
        final int start = 10;
        final int end = 20;
        List<Integer> list = new ArrayList<>();
        for (int i = start; i <= end; i++) {
            list.add(i);
        }
        // 随机删除List中的一个元素:
        int removed = list.remove((int) (Math.random() * list.size()));
        int found = findMissingNumber(start, end, list);
        System.out.println(list.toString());
        System.out.println("missing number: " + found);
        System.out.println(removed == found ? "测试成功" : "测试失败");
    }
我们知道List是一种有序链表:List内部按照放入元素的先后顺序存放,并且每个元素都可以通过索引确定自己的位置。

List还提供了boolean contains(Object o)方法来判断List是否包含某个指定元素。此外,int indexOf(Object o)方法可以返回某个元素的索引,如果元素不存在,就返回-1。

我们来看一个例子:

import java.util.List;
public class Main {
    public static void main(String[] args) {
        List<String> list = List.of("A", "B", "C");
        System.out.println(list.contains("C")); // true
        System.out.println(list.contains("X")); // false
        System.out.println(list.indexOf("C")); // 2
        System.out.println(list.indexOf("X")); // -1
    }
}

Run
这里我们注意一个问题,我们往List中添加的"C"和调用contains("C")传入的"C"是不是同一个实例?

如果这两个"C"不是同一个实例,这段代码是否还能得到正确的结果?我们可以改写一下代码测试一下:

import java.util.List;
public class Main {
    public static void main(String[] args) {
        List<String> list = List.of("A", "B", "C");
        System.out.println(list.contains(new String("C"))); // true or false?
        System.out.println(list.indexOf(new String("C"))); // 2 or -1?
    }
}

Run
因为我们传入的是new String("C"),所以一定是不同的实例。结果仍然符合预期,这是为什么呢?

因为List内部并不是通过==判断两个元素是否相等,而是使用equals()方法判断两个元素是否相等,例如contains()方法可以实现如下:

public class ArrayList {
    Object[] elementData;
    public boolean contains(Object o) {
        for (int i = 0; i < size; i++) {
            if (o.equals(elementData[i])) {
                return true;
            }
        }
        return false;
    }
}
因此,要正确使用List的contains()、indexOf()这些方法,放入的实例必须正确覆写equals()方法,否则,放进去的实例,查找不到。我们之所以能正常放入String、Integer这些对象,是因为Java标准库定义的这些类已经正确实现了equals()方法。

我们以Person对象为例,测试一下:

import java.util.List;
public class Main {
    public static void main(String[] args) {
        List<Person> list = List.of(
            new Person("Xiao Ming"),
            new Person("Xiao Hong"),
            new Person("Bob")
        );
        System.out.println(list.contains(new Person("Bob"))); // false
    }
}

class Person {
    String name;
    public Person(String name) {
        this.name = name;
    }
}

Run
不出意外,虽然放入了new Person("Bob"),但是用另一个new Person("Bob")查询不到,原因就是Person类没有覆写equals()方法。

编写equals
如何正确编写equals()方法?equals()方法要求我们必须满足以下条件:

自反性(Reflexive):对于非null的x来说,x.equals(x)必须返回true;
对称性(Symmetric):对于非null的x和y来说,如果x.equals(y)为true,则y.equals(x)也必须为true;
传递性(Transitive):对于非null的x、y和z来说,如果x.equals(y)为true,y.equals(z)也为true,那么x.equals(z)也必须为true;
一致性(Consistent):对于非null的x和y来说,只要x和y状态不变,则x.equals(y)总是一致地返回true或者false;
对null的比较:即x.equals(null)永远返回false。
上述规则看上去似乎非常复杂,但其实代码实现equals()方法是很简单的,我们以Person类为例:

public class Person {
    public String name;
    public int age;
}
首先,我们要定义“相等”的逻辑含义。对于Person类,如果name相等,并且age相等,我们就认为两个Person实例相等。

因此,编写equals()方法如下:

public boolean equals(Object o) {
    if (o instanceof Person) {
        Person p = (Person) o;
        return this.name.equals(p.name) && this.age == p.age;
    }
    return false;
}
对于引用字段比较,我们使用equals(),对于基本类型字段的比较,我们使用==。

如果this.name为null,那么equals()方法会报错,因此,需要继续改写如下:

public boolean equals(Object o) {
    if (o instanceof Person) {
        Person p = (Person) o;
        boolean nameEquals = false;
        if (this.name == null && p.name == null) {
            nameEquals = true;
        }
        if (this.name != null) {
            nameEquals = this.name.equals(p.name);
        }
        return nameEquals && this.age == p.age;
    }
    return false;
}
如果Person有好几个引用类型的字段,上面的写法就太复杂了。要简化引用类型的比较,我们使用Objects.equals()静态方法:

public boolean equals(Object o) {
    if (o instanceof Person) {
        Person p = (Person) o;
        return Objects.equals(this.name, p.name) && this.age == p.age;
    }
    return false;
}
因此,我们总结一下equals()方法的正确编写方法:

先确定实例“相等”的逻辑,即哪些字段相等,就认为实例相等;
用instanceof判断传入的待比较的Object是不是当前类型,如果是,继续比较,否则,返回false;
对引用类型用Objects.equals()比较,对基本类型直接用==比较。
使用Objects.equals()比较两个引用类型是否相等的目的是省去了判断null的麻烦。两个引用类型都是null时它们也是相等的。

如果不调用List的contains()、indexOf()这些方法,那么放入的元素就不需要实现equals()方法。





欢迎光临 黑马程序员技术交流社区 (http://bbs.itheima.com/) 黑马程序员IT技术论坛 X3.2