[Java] 纯文本查看 复制代码
//注意:使用二分查找的前提是 该数组是有序的.
public class BinarySearch {
public static void main(String[] args) {
// TODO Auto-generated method stub
int arr[] = { 1, 8, 10, 89, 1000, 1000, 1234 };
int resIndex = binarySearch(arr, 0, arr.length - 1, 1000);
System.out.println(resIndex);
}
/**
*
* @param arr
* 数组
* @param left
* 左边的索引
* @param right
* 右边的索引
* @param findVal
* 要查找的值
* @return 如果找到就返回下标,如果没有找到,就返回 -1
*/
public static int binarySearch(int[] arr, int left, int right, int findVal) {
// 当 left > right 时,说明递归整个数组,但是没有找到
if (left > right) {
return -1;
}
int mid = (left + right) / 2;
int midVal = arr[mid];
if (findVal > midVal) { // 向 右递归
return binarySearch(arr, mid + 1, right, findVal);
} else if (findVal < midVal) { // 向左递归
return binarySearch(arr, left, mid - 1, findVal);
} else {
return mid;
}
}
}
[Java] 纯文本查看 复制代码
public static List<Integer> binarySearch(int[] arr, int left, int right, int findVal) {
// 当 left > right 时,说明递归整个数组,但是没有找到
if (left > right) {
return new ArrayList<Integer>();
}
int mid = (left + right) / 2;
int midVal = arr[mid];
if (findVal > midVal) { // 向 右递归
return binarySearch(arr, mid + 1, right, findVal);
} else if (findVal < midVal) { // 向左递归
return binarySearch(arr, left, mid - 1, findVal);
} else {
List<Integer> resIndexlist = new ArrayList<Integer>();
// 向 mid 索引值的左边扫描,将所有满足 1000, 的元素的下标,加入到集合 ArrayList
int temp = mid - 1;
while (true) {
if (temp < 0 || arr[temp] != findVal) {// 退出
break;
}
// 否则,就 temp 放入到 resIndexlist
resIndexlist.add(temp);
temp -= 1; // temp 左移
}
resIndexlist.add(mid); //
// 向 mid 索引值的右边扫描,将所有满足 1000, 的元素的下标,加入到集合 ArrayList
temp = mid + 1;
while (true) {
if (temp > arr.length - 1 || arr[temp] != findVal) {// 退出
break;
}
// 否则,就 temp 放入到 resIndexlist
resIndexlist.add(temp);
temp += 1; // temp 右移
}
return resIndexlist;
}
}
[Java] 纯文本查看 复制代码
public class FibonacciSearch {
public static int maxSize = 20;
public static void main(String[] args) {
int[] arr = { 1, 8, 10, 89, 1000, 1234 };
System.out.println("index=" + fibSearch(arr, 189));// 0
}
// 因为后面我们 mid=low+F(k-1)-1,需要使用到斐波那契数列,因此我们需要先获取到一个斐波那契数列
// 非递归方法得到一个斐波那契数列
public static int[] fib() {
int[] f = new int[maxSize];
f[0] = 1;
f[1] = 1;
for (int i = 2; i < maxSize; i++) {
f = f[i - 1] + f[i - 2];
}
return f;
}
// 编写斐波那契查找算法
// 使用非递归的方式编写算法
/**
*
* @param a
* 数组
* @param key
* 我们需要查找的关键码(值)
* @return 返回对应的下标,如果没有-1
*/
public static int fibSearch(int[] a, int key) {
int low = 0;
int high = a.length - 1;
int k = 0; // 表示斐波那契分割数值的下标
int mid = 0; // 存放 mid 值
int f[] = fib(); // 获取到斐波那契数列
// 获取到斐波那契分割数值的下标
while (high > f[k] - 1) {
k++;
}
// 因为 f[k] 值 可能大于 a 的 长度,因此我们需要使用 Arrays 类,构造一个新的数组,并指向 temp[]
// 不足的部分会使用 0 填充
int[] temp = Arrays.copyOf(a, f[k]);
// 实际上需求使用 a 数组最后的数填充 temp
// 举例:
// temp = {1,8, 10, 89, 1000, 1234, 0, 0} => {1,8, 10, 89, 1000, 1234, 1234,
// 1234,}
for (int i = high + 1; i < temp.length; i++) {
temp = a[high];
}
// 使用 while 来循环处理,找到我们的数 key
while (low <= high) { // 只要这个条件满足,就可以找
mid = low + f[k - 1] - 1;
if (key < temp[mid]) { // 我们应该继续向数组的前面查找(左边)
high = mid - 1;
// 为甚是 k--
// 说明
// 1. 全部元素 = 前面的元素 + 后边元素
// 2. f[k] = f[k-1] + f[k-2]
// 因为 前面有 f[k-1]个元素,所以可以继续拆分 f[k-1] = f[k-2] + f[k-3]
// 即 在 f[k-1] 的前面继续查找 k--
// 即下次循环 mid = f[k-1-1]-1
k--;
} else if (key > temp[mid]) { // 我们应该继续向数组的后面查找(右边)
low = mid + 1;
// 为什么是 k -=2
// 说明
// 1. 全部元素 = 前面的元素 + 后边元素
// 2. f[k] = f[k-1] + f[k-2]
// 3. 因为后面我们有 f[k-2] 所以可以继续拆分 f[k-1] = f[k-3] + f[k-4]
// 4. 即在 f[k-2] 的前面进行查找 k -=2
// 5. 即下次循环 mid = f[k - 1 - 2] - 1
k -= 2;
} else { // 找到
// 需要确定,返回的是哪个下标
if (mid <= high) {
return mid;
} else {
return high;
}
}
}
return -1;
}
}