黑马程序员技术交流社区

标题: 关于垃圾回收的问题。 [打印本页]

作者: 于海生    时间: 2011-12-31 14:26
标题: 关于垃圾回收的问题。
本帖最后由 于海生 于 2012-1-1 07:51 编辑

谁来说一下垃圾回收有什么优点,还有原理是什么?详细一些。
作者: 李爱霞    时间: 2011-12-31 14:32
  Java语言中一个显著的特点就是引入了垃圾回收机制,使c++程序员最头疼的内存管理的问题迎刃而解,它使得Java程序员在编写程序的时候不再需要考虑内存管理。由于有个垃圾回收机制,Java中的对象不再有"作用域"的概念,只有对象的引用才有"作用域"。垃圾回收可以有效的防止内存泄露,有效的使用可以使用的内存。垃圾回收器通常是作为一个单独的低级别的线程运行,不可预知的情况下对内存堆中已经死亡的或者长时间没有使用的对象进行清楚和回收,程序员不能实时的调用垃圾回收器对某个对象或所有对象进行垃圾回收。回收机制有分代复制垃圾回收和标记垃圾回收,增量垃圾回收。
对于GC(垃圾回收)来说,当程序员创建对象时,GC就开始监控这个对象的地址、大小以及使用情况。通常,GC采用有向图的方式记录和管理堆(heap)中的所有对象。通过这种方式确定哪些对象是"可达的",哪些对象是"不可达的"。当GC确定一些对象为"不可达"时,GC就有责任回收这些内存空间。可以。程序员可以手动执行System.gc(),通知GC运行,但是Java语言规范并不保证GC一定会执行。
作者: 刘小峰    时间: 2011-12-31 16:04
1.  自动性。Java技术提供了一个系统级的线程,即垃圾收集器线程,来跟踪每一块分配出去的内存空间,当Java 虚拟机处于空闲循环时,垃圾收集器线程会自动检查每一块分配出去的内存空间,然后自动回收每一块可以回收的无用的内存块。

2.  不可预期性。一个对象成为了垃圾,但是你不能断言,该对象在这行以后就立刻被清除,甚至有可能当程序结束后,该对象仍然占用内存。因为JAVA也不能保证及时地清除无用的对象,所以JAVA程序有时会出现内存不足的情况,只是这种情况很少出现。垃圾收集线程在一个Java程序中的执行是自动的,不能强制执行,即使程序员能明确地判断出有一块内存已经无用了,是应该回收的,我们也不能强制垃圾收集器回收该内存块。我们唯一能做的就是通过调用System.gc 方法来"建议"执行垃圾收集器,但其是否可以马上执行却是不可知的。


作者: 黑马巩伟伟    时间: 2011-12-31 16:13
垃圾回收,它的优点就不言而喻了,首先很明显的一个就是释放内存,为程序的运行提供一个安全运行空间。当我们在程序中创建对象时,就会有垃圾回收线程启动。如果发现有对象的指向为空,认为该对象是垃圾就会回收掉。
例如:
class GarbageTest {
   public void garbage() {
      Integer i = new Integer(0);
      ...
      ...
      i = null; //这时,前面Integer(0)所产生的对象就成为垃圾。
      ...
   }
}
作者: 付星    时间: 2011-12-31 17:12
JAVA中的对象是在堆上分配,而在堆上分配存储空间的方式是昂贵的.正是由于GC才使java在堆上的空间分配速度得以于其他语言在堆栈上分配速度相媲美.java对象也不再有作用域的概念.作用域是对于引用而言的.垃圾回收器通常是作为一个单独的低级别的线程运行,不可预知的情况下对内存堆中已经死亡的或者长时间没有使用的对象进行清楚和回收,程序员不能实时的调用垃圾回收器对某个对象或所有对象进行垃圾回收.程序可以用System.gc() 或Runtime.getRuntime().gc()    请求垃圾回收,但并不保证立即执行垃圾回收.

GC的工作原理: 引用计数,标记复制

"引用计数"是一种简单但速度很慢的垃圾回收技术.所有对象都有一个引用计数器,当有引用连接时计数器加1,当引用离开作用域时或者被置于NULL时,计数器-1,垃圾回收器会在所以包含对象引用的列表上进行遍历,当发现某个对象的引用计数为0时,就释放占用的空间.

"标记复制"的运行机制,垃圾回收器遍历包含所有引用的列表,当发现存活的对象引用时做上标记,这样当遍历完所有对象引用并做上标记的时候,执行垃圾回收,将没有标记的对象堆空间释放.

垃圾回收机制的优点:

Java的垃圾回收机制是的程序员不用担心内存空间的分配,减少了内存溢出.但同时也牺牲了一定的性能.

作者: 马新乐    时间: 2011-12-31 23:48
Java的堆是一个运行时数据区,类的实例(对象)从中分配空间。Java虚拟机(JVM)的堆中储存着正在运行的应用程序所建立的所有对象,这些对象通过new、newarray、anewarray和multianewarray等指令建立,但是它们不需要程序代码来显式地释放。一般来说,堆的是由垃圾回收 来负责的,尽管JVM规范并不要求特殊的垃圾回收技术,甚至根本就不需要垃圾回收,但是由于内存的有限性,JVM在实现的时候都有一个由垃圾回收所管理的堆。垃圾回收是一种动态存储管理技术,它自动地释放不再被程序引用的对象,按照特定的垃圾收集算法来实现资源自动回收的功能。


垃圾收集的意义


在C++中,对象所占的内存在程序结束运行之前一直被占用,在明确释放之前不能分配给其它对象;而在Java中,当没有对象引用指向原先分配给某个对象的内存时,该内存便成为垃圾。JVM的一个系统级线程会自动释放该内存块。垃圾收集意味着程序不再需要的对象是"无用信息",这些信息将被丢弃。当一个对象不再被引用的时候,内存回收它占领的空间,以便空间被后来的新对象使用。事实上,除了释放没用的对象,垃圾收集也可以清除内存记录碎片。由于创建对象和垃圾收集器释放丢弃对象所占的内存空间,内存会出现碎片。碎片是分配给对象的内存块之间的空闲内存洞。碎片整理将所占用的堆内存移到堆的一端,JVM将整理出的内存分配给新的对象。


垃圾收集能自动释放内存空间,减轻编程的负担。这使Java 虚拟机具有一些优点。首先,它能使编程效率提高。在没有垃圾收集机制的时候,可能要花许多时间来解决一个难懂的存储器问题。在用Java语言编程的时候,靠垃圾收集机制可大大缩短时间。其次是它保护程序的完整性, 垃圾收集是Java语言安全性策略的一个重要部份。


垃圾收集的一个潜在的缺点是它的开销影响程序性能。Java虚拟机必须追踪运行程序中有用的对象, 而且最终释放没用的对象。这一个过程需要花费处理器的时间。其次垃圾收集算法的不完备性,早先采用的某些垃圾收集算法就不能保证100%收集到所有的废弃内存。当然随着垃圾收集算法的不断改进以及软硬件运行效率的不断提升,这些问题都可以迎刃而解。


垃圾收集的算法分析


Java语言规范没有明确地说明JVM使用哪种垃圾回收算法,但是任何一种垃圾收集算法一般要做2件基本的事情:(1)发现无用信息对象;(2)回收被无用对象占用的内存空间,使该空间可被程序再次使用。


大多数垃圾回收算法使用了根集(root set)这个概念;所谓根集就量正在执行的Java程序可以访问的引用变量的集合(包括局部变量、参数、类变量),程序可以使用引用变量访问对象的属性和调用对象的方法。垃圾收集首选需要确定从根开始哪些是可达的和哪些是不可达的,从根集可达的对象都是活动对象,它们不能作为垃圾被回收,这也包括从根集间接可达的对象。而根集通过任意路径不可达的对象符合垃圾收集的条件,应该被回收。下面介绍几个常用的算法。


1、 引用计数法(Reference Counting Collector)


引用计数法是唯一没有使用根集的垃圾回收的法,该算法使用引用计数器来区分存活对象和不再使用的对象。一般来说,堆中的每个对象对应一个引用计数器。当每一次创建一个对象并赋给一个变量时,引用计数器置为1。当对象被赋给任意变量时,引用计数器每次加1当对象出了作用域后(该对象丢弃不再使用),引用计数器减1,一旦引用计数器为0,对象就满足了垃圾收集的条件。


基于引用计数器的垃圾收集器运行较快,不会长时间中断程序执行,适宜地必须 实时运行的程序。但引用计数器增加了程序执行的开销,因为每次对象赋给新的变量,计数器加1,而每次现有对象出了作用域生,计数器减1。


2、tracing算法(Tracing Collector)


tracing算法是为了解决引用计数法的问题而提出,它使用了根集的概念。基于tracing算法的垃圾收集器从根集开始扫描,识别出哪些对象可达,哪些对象不可达,并用某种方式标记可达对象,例如对每个可达对象设置一个或多个位。在扫描识别过程中,基于tracing算法的垃圾收集也称为标记和清除(mark-and-sweep)垃圾收集器.


3、compacting算法(Compacting Collector)


为了解决堆碎片问题,基于tracing的垃圾回收吸收了Compacting算法的思想,在清除的过程中,算法将所有的对象移到堆的一端,堆的另一端就变成了一个相邻的空闲内存区,收集器会对它移动的所有对象的所有引用进行更新,使得这些引用在新的位置能识别原来 的对象。在基于Compacting算法的收集器的实现中,一般增加句柄和句柄表。


4、copying算法(Coping Collector)


该算法的提出是为了克服句柄的开销和解决堆碎片的垃圾回收。它开始时把堆分成 一个对象 面和多个空闲面, 程序从对象面为对象分配空间,当对象满了,基于coping算法的垃圾 收集就从根集中扫描活动对象,并将每个 活动对象复制到空闲面(使得活动对象所占的内存之间没有空闲洞),这样空闲面变成了对象面,原来的对象面变成了空闲面,程序会在新的对象面中分配内存。


一种典型的基于coping算法的垃圾回收是stop-and-copy算法,它将堆分成对象面和空闲区域面,在对象面与空闲区域面的切换过程中,程序暂停执行。


5、generation算法(Generational Collector)


stop-and-copy垃圾收集器的一个缺陷是收集器必须复制所有的活动对象,这增加了程序等待时间,这是coping算法低效的原因。在程序设计中有这样的规律:多数对象存在的时间比较短,少数的存在时间比较长。因此,generation算法将堆分成两个或多个,每个子堆作为对象的一代(generation)。由于多数对象存在的时间比较短,随着程序丢弃不使用的对象,垃圾收集器将从最年轻的子堆中收集这些对象。在分代式的垃圾收集器运行后,上次运行存活下来的对象移到下一最高代的子堆中,由于老一代的子堆不会经常被回收,因而节省了时间。


6、adaptive算法(Adaptive Collector)


在特定的情况下,一些垃圾收集算法会优于其它算法。基于Adaptive算法的垃圾收集器就是监控当前堆的使用情况,并将选择适当算法的垃圾收集器。

透视Java垃圾回收


1、命令行参数透视垃圾收集器的运行


2、使用System.gc()可以不管JVM使用的是哪一种垃圾回收的算法,都可以请求Java的垃圾回收。在命令行中有一个参数-verbosegc可以查看Java使用的堆内存的情况,它的格式如下:


java -verbosegc classfile


可以看个例子:


class TestGC

{

public static void main(String[] args)

{

new TestGC();

System.gc();

System.runFinalization();

}

}


在这个例子中,一个新的对象被创建,由于它没有使用,所以该对象迅速地变为可达,程序编译后,执行命令: java -verbosegc TestGC 后结果为:


[Full GC 168K->97K(1984K), 0.0253873 secs]


机器的环境为,Windows 2000 + JDK1.3.1,箭头前后的数据168K和97K分别表示垃圾收集GC前后所有存活对象使用的内存容量,说明有168K-97K=71K的对象容量被回收,括号内的数据1984K为堆内存的总容量,收集所需要的时间是0.0253873秒(这个时间在每次执行的时候会有所不同)。





欢迎光临 黑马程序员技术交流社区 (http://bbs.itheima.com/) 黑马程序员IT技术论坛 X3.2