
Collections
Programming Topics

Contents

About Collections 6
At a Glance 6

Accessing Indexes and Easily Enumerating Elements: Arrays 7
Associating Data with Arbitrary Keys: Dictionaries 7
Offering Fast Insertion, Deletion, and Membership Checks: Sets 7
Storing Subsets of Arrays: Index Sets 8
Storing Paths Through Nested Arrays: Index Paths 8
Customizing Memory and Storage Options: Pointer Collection Classes (OS X) 9
Working with Collections: Copying and Enumerating 9

See Also 9

Arrays: Ordered Collections 10
Array Fundamentals 10
Mutable Arrays 11
Using Arrays 12
Sorting Arrays 13

Sorting with Sort Descriptors 14
Sorting with Blocks 17
Sorting with Functions and Selectors 17

Filtering Arrays 19
Pointer Arrays 20

Dictionaries: Collections of Keys and Values 22
Dictionary Fundamentals 22
Using Mutable Dictionaries 23
Sorting a Dictionary 24
Using Custom Keys 25
Using Map Tables 27

Sets: Unordered Collections of Objects 30
Set Fundamentals 30
Mutable Sets 31
Using Sets 32
Hash Tables 33

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

2

Index Sets: Storing Indexes into an Array 35
Index Set Fundamentals 35
Mutable Index Sets 36
Iterating Through Index Sets 36
Index Sets and Blocks 37

Index Paths: Storing a Path Through Nested Arrays 39
Index Path Fundamentals 39
Using Index Paths 40

Copying Collections 41
Shallow Copies 41
Deep Copies 42
Copying and Mutability 42

Enumeration: Traversing a Collection’s Elements 44
Fast Enumeration 44
Using Block-Based Enumeration 45
Using an Enumerator 46

Pointer Function Options 47
Pointer Collection Fundamentals 47
Configuring Pointer Collections to Hold Objects 48
Configuring Pointer Collections for Arbitrary Pointer Use 49

Document Revision History 50

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

3

Figures and Listings

Arrays: Ordered Collections 10
Figure 1 Example array 10
Figure 2 Sorting arrays 13
Figure 3 Pointer array object ownership 20
Listing 1 Adding to and removing from arrays 12
Listing 2 Searching for an object in an array 13
Listing 3 Creating and sorting an array of dictionaries 14
Listing 4 Sorting by first name, last name 15
Listing 5 Sorting with a function is less flexible 16
Listing 6 Blocks ease custom sorting of arrays 17
Listing 7 Sorting using selectors and functions 17
Listing 8 Filtering arrays with predicates 19
Listing 9 Pointer array configured for nonobject pointers 21

Dictionaries: Collections of Keys and Values 22
Figure 1 Example dictionary 22
Figure 2 Map table object ownership 27
Listing 1 Adding objects to a dictionary 23
Listing 2 Adding entries from another dictionary 24
Listing 3 Sorting dictionary keys by value 24
Listing 4 Blocks ease custom sorting of dictionaries 25
Listing 5 Map table configured for nonobject pointers 28

Sets: Unordered Collections of Objects 30
Figure 1 Example set 30
Figure 2 Hash table object ownership 33
Listing 1 Hash table configured for nonobject pointers 34

Index Sets: Storing Indexes into an Array 35
Figure 1 Index set and array interaction 35
Listing 1 Adding indexes to a mutable index set 36
Listing 2 Forward iteration through an index set 36
Listing 3 Reverse iteration through an index set 37
Listing 4 Creating an index set from an array using a block 37

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

4

Listing 5 Enumerating an index set to access multiple arrays 38

Index Paths: Storing a Path Through Nested Arrays 39
Figure 1 Nested arrays and index paths 39
Listing 1 Creating an index path from an array 39

Copying Collections 41
Figure 1 Shallow copies and deep copies 41
Listing 1 Making a shallow copy 41
Listing 2 Making a deep copy 42
Listing 3 A true deep copy 42

Enumeration: Traversing a Collection’s Elements 44
Listing 1 Using fast enumeration with a dictionary 44
Listing 2 Block-based enumeration of an array 45
Listing 3 Block-based enumeration of a set 45
Listing 4 Enumerating a dictionary and removing objects 46

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

5

In Cocoa and Cocoa Touch, a collection is a Foundation framework class used for storing and managing groups
of objects. Its primary role is to store objects in the form of either an array, a dictionary, or a set.

These classes ease the task of managing groups of objects. Foundation collections are efficient and used
extensively by OS X and iOS.

At a Glance
Collections share a number of characteristics. Most collections hold only objects and have both a mutable and
an immutable variant.

All collections share a number of common tasks, which include:

 ● Enumerating the objects in a collection

 ● Determining whether an object is in a collection

 ● Accessing individual elements in a collection

Mutable collections also allow some additional tasks:

 ● Adding objects to a collection

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

6

About Collections

 ● Removing objects from a collection

While collections share many characteristics, there are also important differences. As a result, you will find
some collections better suited to a particular task than others. Because how well a collection performs depends
on how it is used, you should choose the collection best suited to a particular task.

Accessing Indexes and Easily Enumerating Elements: Arrays
Arrays (such as NSArray and NSMutableArray) are ordered collections which allow indexed access to their
contents. You might use an array to store the information to be presented in a table view because the order
matters.

Relevant Chapters: “Arrays: Ordered Collections” (page 10)

Associating Data with Arbitrary Keys: Dictionaries
Dictionaries (such as NSDictionary and NSMutableDictionary) are unordered collections that allow
keyed-value access to their contents. They also allow for fast insertion and deletion operations. Dictionaries
are useful for storing values that have meaning based on their key. For example, you might have a dictionary
of information about California, with capital as a key and Sacramento as the corresponding value.

Relevant Chapters: “Dictionaries: Collections of Keys and Values” (page 22)

Offering Fast Insertion, Deletion, and Membership Checks: Sets
Sets (such as NSSet , NSMutableSet, and NSCountedSet) are unordered collections of objects. Sets allow
for fast insertion and deletion operations. They also allow you to quickly see whether an object is in a collection.
NSSet and NSMutableSet store collections of distinct objects, while NSCountedSet stores a collection of
non-distinct objects. For example, suppose you have a number of city objects and you want to visit each one
only once. If you store each city that you visit in a set, you can quickly and easily see whether you have visited
it.

About Collections
At a Glance

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

7

Relevant Chapters: “Sets: Unordered Collections of Objects” (page 30)

Storing Subsets of Arrays: Index Sets
Index sets (such as NSIndexSet and NSMutableIndexSet) are helper objects that extend the capabilities
of arrays. They allow you to store a subset of an array by storing the indexes into the array rather than by
creating a new array. You might use an index set to allow a user to select multiple entries from a list of entries.
For example, suppose you have a table view and you allow the user to select some of the rows. Because the
rows are stored as an array, you could store the selections as an index set into that array.

Relevant Chapters: “Index Sets: Storing Indexes into an Array” (page 35)

Storing Paths Through Nested Arrays: Index Paths
Index paths store the location of information in a more complicated collection hierarchy, specifically nested
arrays. Cocoa provides the NSIndexPath class for this purpose. For example, the index path 1.4.3.2 specifies
the path shown here:

While they are not collections in the strictest sense, index paths ease the task of managing nested arrays. The
UITableView class makes extensive use of index paths to store locations within a table view.

About Collections
At a Glance

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

8

Relevant Chapters: “Index Paths: Storing a Path Through Nested Arrays” (page 39)

Customizing Memory and Storage Options: Pointer Collection Classes (OS X)
If you need collections to store arbitrary pointers or integers, or need to make use of zeroing weak references
in a garbage-collected environment, there are the three pointer collection classes: NSPointerArray,
NSMapTable, and NSHashTable. These are similar to NSMutableArray, NSMutableDictionary, and
NSMutableSet, respectively. The three pointer collection classes allow additional options for specifying how
the collection manages its contents. You can, for example, use pointer equality instead of invoking isEqual:
during comparisons. Unlike all other collection classes, NSPointerArray is allowed to hold a NULL pointer.

Relevant Chapters: “Arrays: Ordered Collections” (page 10), “Dictionaries: Collections of Keys and
Values” (page 22), “Sets: Unordered Collections of Objects” (page 30), and “Pointer Function
Options” (page 47).

Working with Collections: Copying and Enumerating
In addition to class specific behavior, there are some tasks which are shared in similar form between the
collection classes. Two of these tasks are copying a collection and enumerating its contents.

When you need to create a new collection with the contents of another, you can choose either a shallow or a
deep copy into the other. In a shallow copy each object is retained when it is added to the new collection and
ownership is shared by two or more collections. In a deep copy each object is sent a copyWithZone: message

as it is added to the collection, instead of being retained.

If you need to check each item in a collection for some condition or to perform some action on the entries
selectively, you can use one of the provided ways of enumerating the contents of a collection. The two main
methods of enumeration are fast enumeration and block-based enumeration.

Relevant Chapters: “Copying Collections” (page 41) and “Enumeration: Traversing a Collection’s
Elements” (page 44)

See Also
If you are new to Cocoa you should read:

 ● Cocoa Fundamentals Guide , which introduces the basic concepts, terminology, architectures, and design
patterns of the Cocoa frameworks and development environment.

About Collections
See Also

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

9

Arrays are ordered collections of any sort of object. For example, the objects contained by the array in Figure
1 can be any combination of cat and dog objects, and if the array is mutable you can add more dog objects.
The collection does not have to be homogeneous.

Figure 1 Example array

Array Fundamentals
An NSArray object manages an immutable array—that is, after you have created the array, you cannot add,
remove, or replace objects. You can, however, modify individual elements themselves (if they support
modification). The mutability of the collection does not affect the mutability of the objects inside the collection.
You should use an immutable array if the array rarely changes, or changes wholesale.

An NSMutableArray object manages a mutable array, which allows the addition and deletion of entries,
allocating memory as needed. For example, given an NSMutableArray object that contains just a single dog
object, you can add another dog, or a cat, or any other object. You can also, as with an NSArray object, change
the dog’s name—and in general, anything that you can do with an NSArray object you can do with an
NSMutableArray object. You should use a mutable array if the array changes incrementally or is very large—as
large collections take more time to initialize.

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

10

Arrays: Ordered Collections

You can easily create an instance of one type of array from the other using the initializer initWithArray: or
the convenience constructor arrayWithArray:. For example, if you have an instance of NSArray, myArray,
you can create a mutable copy as follows:

NSMutableArray *myMutableArray = [NSMutableArray arrayWithArray:myArray];

In general, you instantiate an array by sending one of the array... messages to either the NSArray or
NSMutableArray class. The array... messages return an array containing the elements you pass in as
arguments. And when you add an object to an NSMutableArray object, the object isn’t copied, (unless you
pass YES as the argument to initWithArray:copyItems:). Rather, a strong reference to the object is added
to the array. For more information on copying and memory management, see “Copying Collections” (page
41).

In NSArray, two main methods—count and objectAtIndex:—provide the basis for all other methods in
its interface:

 ● count returns the number of elements in the array.

 ● objectAtIndex: gives you access to the array elements by index, with index values starting at 0.

Note: Most operations on an array take constant time: accessing an element, adding or removing
an element at either end, and replacing an element. Inserting an element into the middle of an array
takes linear time.

Mutable Arrays
In NSMutableArray, the main methods, listed below, provide the basis for its ability to add, replace, and
remove elements:

addObject:

insertObject:atIndex:

removeLastObject

removeObjectAtIndex:

replaceObjectAtIndex:withObject:

If you do not need an object to be placed at a specific index or to be removed from the middle of the collection,
you should use the addObject: and removeLastObject methods because it is faster to add and remove
at the end of an array than in the middle.

Arrays: Ordered Collections
Mutable Arrays

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

11

The other methods in NSMutableArray provide convenient ways of inserting an object into a slot in the array
and removing an object based on its identity or position in the array, as illustrated in Listing 1.

Listing 1 Adding to and removing from arrays

NSMutableArray *array = [NSMutableArray array];

[array addObject:[NSColor blackColor]];

[array insertObject:[NSColor redColor] atIndex:0];

[array insertObject:[NSColor blueColor] atIndex:1];

[array addObject:[NSColor whiteColor]];

[array removeObjectsInRange:(NSMakeRange(1, 2))];

// array now contains redColor and whiteColor

Using Arrays
You can access objects in an array by index using the objectAtIndex: method. For example, if you have an
array of NSString objects, you can access the third string in the array as follows:

NSString *someString = [arrayOfStrings objectAtIndex:2];

The NSArray methods objectEnumerator and reverseObjectEnumerator grant sequential access to
the elements of the array, differing only in the direction of travel through the elements. Similarly, the NSArray
methods makeObjectsPerformSelector: and makeObjectsPerformSelector:withObject: let you
send messages to all objects in the array. In most cases, fast enumeration should be used as it is faster and
more flexible than using an NSEnumerator or the makeObjectsPerformSelector: method. For more on
enumeration, see “Enumeration: Traversing a Collection’s Elements” (page 44).

You can extract a subset of the array (subarrayWithRange:) or concatenate the elements of an array of
NSString objects into a single string (componentsJoinedByString:). In addition, you can compare two
arrays using the isEqualToArray: and firstObjectCommonWithArray:methods. Finally, you can create
a new array that contains the objects in an existing array and one or more additional objects with
arrayByAddingObject: or arrayByAddingObjectsFromArray:.

There are two principal methods you can use to determine whether an object is present in an array,
indexOfObject: andindexOfObjectIdenticalTo:. There are also two variants,
indexOfObject:inRange: and indexOfObjectIdenticalTo:inRange: that you can use to search a

Arrays: Ordered Collections
Using Arrays

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

12

range within an array. The indexOfObject: methods test for equality by sending elements in the array an
isEqual:message; the indexOfObjectIdenticalTo:methods test for equality using pointer comparison.
The difference is illustrated in Listing 2.

Listing 2 Searching for an object in an array

NSString *yes0 = @"yes";

NSString *yes1 = @"YES";

NSString *yes2 = [NSString stringWithFormat:@"%@", yes1];

NSArray *yesArray = [NSArray arrayWithObjects:yes0, yes1, yes2, nil];

NSUInteger index;

index = [yesArray indexOfObject:yes2];

// index is 1

index = [yesArray indexOfObjectIdenticalTo:yes2];

// index is 2

Sorting Arrays
You may need to sort an array based on some criteria. For instance, you may need to place a number of
user-created strings into alphabetic order, or you may need to place numbers into increasing or decreasing
order. Figure 2 shows an array sorted by last name then first name. Cocoa provides convenient ways to sort
the contents of an array, such as sort descriptors, blocks, and selectors.

Figure 2 Sorting arrays

Arrays: Ordered Collections
Sorting Arrays

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

13

Sorting with Sort Descriptors
Sort descriptors (instances of NSSortDescriptor) provide a convenient and abstract way to describe a sort
ordering. Sort descriptors provide several useful features. You can easily perform most sort operations with
minimal custom code. You can also use sort descriptors in conjunction with Cocoa bindings to sort the contents
of, for example, a table view. You can also use them with Core Data to order the results of a fetch request.

If you use the methods sortedArrayUsingDescriptors: or sortUsingDescriptors:, sort descriptors
provide an easy way to sort a collection of objects using a number of their properties. Given an array of
dictionaries (custom objects work in the same way), you can sort its contents by last name then first name.
Listing 3 shows how to create that array and then sort with descriptors. (Figure 2 (page 13) shows an illustration
of this example.)

Listing 3 Creating and sorting an array of dictionaries

//First create the array of dictionaries

NSString *last = @"lastName";

NSString *first = @"firstName";

NSMutableArray *array = [NSMutableArray array];

NSArray *sortedArray;

NSDictionary *dict;

dict = [NSDictionary dictionaryWithObjectsAndKeys:

@"Jo", first, @"Smith", last, nil];

[array addObject:dict];

dict = [NSDictionary dictionaryWithObjectsAndKeys:

@"Joe", first, @"Smith", last, nil];

[array addObject:dict];

dict = [NSDictionary dictionaryWithObjectsAndKeys:

@"Joe", first, @"Smythe", last, nil];

[array addObject:dict];

dict = [NSDictionary dictionaryWithObjectsAndKeys:

@"Joanne", first, @"Smith", last, nil];

[array addObject:dict];

Arrays: Ordered Collections
Sorting Arrays

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

14

dict = [NSDictionary dictionaryWithObjectsAndKeys:

@"Robert", first, @"Jones", last, nil];

[array addObject:dict];

//Next we sort the contents of the array by last name then first name

// The results are likely to be shown to a user

// Note the use of the localizedCaseInsensitiveCompare: selector

NSSortDescriptor *lastDescriptor =

[[NSSortDescriptor alloc] initWithKey:last

ascending:YES

selector:@selector(localizedCaseInsensitiveCompare:)];

NSSortDescriptor *firstDescriptor =

[[NSSortDescriptor alloc] initWithKey:first

ascending:YES

selector:@selector(localizedCaseInsensitiveCompare:)];

NSArray *descriptors = [NSArray arrayWithObjects:lastDescriptor, firstDescriptor,
nil];

sortedArray = [array sortedArrayUsingDescriptors:descriptors];

It is conceptually and programmatically easy to change the sort ordering and to arrange by first name then
last name, as shown in Listing 4.

Listing 4 Sorting by first name, last name

NSSortDescriptor *lastDescriptor =

[[NSSortDescriptor alloc] initWithKey:last

ascending:NO

selector:@selector(localizedCaseInsensitiveCompare:)];

NSSortDescriptor *firstDescriptor =

[[NSSortDescriptor alloc] initWithKey:first

ascending:NO

selector:@selector(localizedCaseInsensitiveCompare:)];

Arrays: Ordered Collections
Sorting Arrays

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

15

NSArray *descriptors = [NSArray arrayWithObjects:firstDescriptor, lastDescriptor,
nil];

sortedArray = [array sortedArrayUsingDescriptors:descriptors];

In particular, it is straightforward to create the sort descriptors from user input.

By contrast, Listing 5 illustrates the first sorting using a function. This approach is considerably less flexible.

Listing 5 Sorting with a function is less flexible

NSInteger lastNameFirstNameSort(id person1, id person2, void *reverse)

{

NSString *name1 = [person1 valueForKey:last];

NSString *name2 = [person2 valueForKey:last];

NSComparisonResult comparison = [name1 localizedCaseInsensitiveCompare:name2];

if (comparison == NSOrderedSame) {

name1 = [person1 valueForKey:first];

name2 = [person2 valueForKey:first];

comparison = [name1 localizedCaseInsensitiveCompare:name2];

}

if (*(BOOL *)reverse == YES) {

return 0 - comparison;

}

return comparison;

}

BOOL reverseSort = YES;

sortedArray = [array sortedArrayUsingFunction:lastNameFirstNameSort

context:&reverseSort];

Arrays: Ordered Collections
Sorting Arrays

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

16

Sorting with Blocks
You can use blocks to help sort an array based on custom criteria. The sortedArrayUsingComparator:
method of NSArray sorts the array into a new array, using the block to compare the objects. NSMutableArray's
sortUsingComparator: sorts the array in place, using the block to compare the objects. Listing 6 illustrates
sorting with a block.

Listing 6 Blocks ease custom sorting of arrays

NSArray *sortedArray = [array sortedArrayUsingComparator: ^(id obj1, id obj2) {

if ([obj1 integerValue] > [obj2 integerValue]) {

return (NSComparisonResult)NSOrderedDescending;

}

if ([obj1 integerValue] < [obj2 integerValue]) {

return (NSComparisonResult)NSOrderedAscending;

}

return (NSComparisonResult)NSOrderedSame;

}];

Sorting with Functions and Selectors
Listing 7 illustrates the use of the methods
sortedArrayUsingSelector:,sortedArrayUsingFunction:context:, and
sortedArrayUsingFunction:context:hint:. The most complex of these methods is
sortedArrayUsingFunction:context:hint:. The hinted sort is most efficient when you have a large
array (N entries) that you sort once and then change only slightly (P additions and deletions, where P is much
smaller than N). You can reuse the work you did in the original sort by conceptually doing a merge sort between
the N “old” items and the P “new” items. To obtain an appropriate hint, you use sortedArrayHint when the
original array has been sorted, and keep hold of it until you need it (when you want to re-sort the array after
it has been modified).

Listing 7 Sorting using selectors and functions

NSInteger alphabeticSort(id string1, id string2, void *reverse)

{

if (*(BOOL *)reverse == YES) {

return [string2 localizedCaseInsensitiveCompare:string1];

Arrays: Ordered Collections
Sorting Arrays

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

17

}

return [string1 localizedCaseInsensitiveCompare:string2];

}

NSMutableArray *anArray =

[NSMutableArray arrayWithObjects:@"aa", @"ab", @"ac", @"ad", @"ae", @"af",
@"ag",

@"ah", @"ai", @"aj", @"ak", @"al", @"am", @"an", @"ao", @"ap", @"aq",
@"ar", @"as", @"at",

@"au", @"av", @"aw", @"ax", @"ay", @"az", @"ba", @"bb", @"bc", @"bd",
@"bf", @"bg", @"bh",

@"bi", @"bj", @"bk", @"bl", @"bm", @"bn", @"bo", @"bp", @"bq", @"br",
@"bs", @"bt", @"bu",

@"bv", @"bw", @"bx", @"by", @"bz", @"ca", @"cb", @"cc", @"cd", @"ce",
@"cf", @"cg", @"ch",

@"ci", @"cj", @"ck", @"cl", @"cm", @"cn", @"co", @"cp", @"cq", @"cr",
@"cs", @"ct", @"cu",

@"cv", @"cw", @"cx", @"cy", @"cz", nil];

// note: anArray is sorted

NSData *sortedArrayHint = [anArray sortedArrayHint];

[anArray insertObject:@"be" atIndex:5];

NSArray *sortedArray;

// sort using a selector

sortedArray =

[anArray
sortedArrayUsingSelector:@selector(localizedCaseInsensitiveCompare:)];

// sort using a function

BOOL reverseSort = NO;

sortedArray =

[anArray sortedArrayUsingFunction:alphabeticSort context:&reverseSort];

// sort with a hint

sortedArray =

Arrays: Ordered Collections
Sorting Arrays

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

18

[anArray sortedArrayUsingFunction:alphabeticSort

context:&reverseSort

hint:sortedArrayHint];

Important: If you sort an array of strings that is to be shown to the end user, you should always use a
localized comparison. In other languages or contexts, the correct order of a sorted array can be different.

For a general overview of the issues related to sorting, see Collation Introduction.

Filtering Arrays
The NSArray and NSMutableArray classes provide methods to filter array contents. NSArray provides
filteredArrayUsingPredicate:, which returns a new array containing objects in the receiver that match
the specified predicate. NSMutableArray adds filterUsingPredicate:, which evaluates the receiver’s
content against the specified predicate and leaves only objects that match. These methods are illustrated in
Listing 8. For more about predicates, see Predicate Programming Guide .

Listing 8 Filtering arrays with predicates

NSMutableArray *array =

[NSMutableArray arrayWithObjects:@"Bill", @"Ben", @"Chris", @"Melissa", nil];

NSPredicate *bPredicate =

[NSPredicate predicateWithFormat:@"SELF beginswith[c] 'b'"];

NSArray *beginWithB =

[array filteredArrayUsingPredicate:bPredicate];

// beginWithB contains { @"Bill", @"Ben" }.

NSPredicate *sPredicate =

[NSPredicate predicateWithFormat:@"SELF contains[c] 's'"];

[array filterUsingPredicate:sPredicate];

// array now contains { @"Chris", @"Melissa" }

Arrays: Ordered Collections
Filtering Arrays

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

19

http://icu-project.org/userguide/Collate_Intro.html

You can also filter an array using an NSIndexSet object. NSArray provides objectsAtIndexes:, which
returns a new array containing the objects at the indexes in the provided index set. NSMutableArray adds
removeObjectsAtIndexes:, which allows you to filter the array in place using an index set. For more
information on index sets, see “Index Sets: Storing Indexes into an Array” (page 35).

Pointer Arrays

iOS Note: The NSPointerArray class is not available in iOS.

The NSPointerArray class is configured by default to hold objects much as NSMutableArray does, except
that it can hold nil values and that the count method reflects those nil values. It also allows additional
storage options that you can tailor for specific cases, such as when you need advanced memory management

options or when you want to hold a specific type of pointer. For example, the pointer array in Figure 3 is
configured to hold weak references to its contents. You can also specify whether you want to copy objects
entered into the array.

Figure 3 Pointer array object ownership

Weak
references

Strong
references

A

B

C

D

E

NSPointer Array

Objects

Z

You can use an NSPointerArray object when you want an ordered collection that uses weak references. For
example, suppose you have a global array that contains some objects. Because global objects are never
collected, none of its contents can be deallocated unless they are held weakly. Pointer arrays configured to

Arrays: Ordered Collections
Pointer Arrays

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

20

hold objects weakly do not own their contents. If there are no strong references to objects within such a pointer
array, those objects can be deallocated. For example, the pointer array in Figure 3 (page 20) holds weak
references to its contents. Object D and Object E will deallocated.

To create a pointer array , create or initialize it using pointerArrayWithOptions: or initWithOptions:
and the appropriate NSPointerFunctionsOptions options. Alternatively you can initialize it using
initWithPointerFunctions: and appropriate instances of NSPointerFunctions. For more information
on the various pointer functions options, see “Pointer Function Options” (page 47).

The NSPointerArray class also defines a number of convenience constructors for creating a pointer array
with strong or weak references to its contents. For example, pointerArrayWithWeakObjects creates a
pointer array that holds weak references to its contents. These convenience constructors should only be used
if you are storing objects.

To configure a pointer array to use arbitrary pointers, you can initialize it with both the
NSPointerFunctionsOpaqueMemory and NSPointerFunctionsOpaquePersonality options. For
example, you can add a pointer to an int value using the approach shown in Listing 9.

Listing 9 Pointer array configured for nonobject pointers

NSPointerFunctionOptions options=(NSPointerFunctionsOpaqueMemory |

NSPointerFunctionsOpaquePersonality);

NSPointerArray *ptrArray=[NSPointerArray pointerArrayWithOptions: options];

[ptrArray addPointer: someIntPtr];

You can then access an integer as show below.

NSLog(@" Index 0 contains: %i", *(int *) [ptrArray pointerAtIndex: 0]);

When configured to use arbitrary pointers, a pointer array has the risks associated with using pointers. For
example, if the pointers refer to stack–based data created in a function, those pointers are not valid outside
of the function, even if the pointer array is. Trying to access them will lead to undefined behavior.

Arrays: Ordered Collections
Pointer Arrays

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

21

Dictionaries manage pairs of keys and values. A key-value pair within a dictionary is called an entry. Each entry
consists of one object that represents the key, and a second object which is that key’s value. Within a dictionary,
the keys are unique—that is, no two keys in a single dictionary are equal (as determined by isEqual:). A key
can be any object that adopts the NSCopying protocol and implements the hash and isEqual: methods.
Figure 1 shows a dictionary which contains information about a hypothetical person. As shown, a value
contained in the dictionary can be any object, even another collection.

Figure 1 Example dictionary

Dictionary Fundamentals
An NSDictionary object manages an immutable dictionary—that is, after you create the dictionary, you
cannot add, remove or replace keys and values. You can, however, modify individual values themselves (if they
support modification), but the keys must not be modified. The mutability of the collection does not affect the
mutability of the objects inside the collection. You should use an immutable dictionary if the dictionary rarely
changes, or changes wholesale.

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

22

Dictionaries: Collections of Keys and Values

An NSMutableDictionary object manages a mutable dictionary, which allows the addition and deletion of
entries at any time, automatically allocating memory as needed. You should use a mutable dictionary if the
dictionary changes incrementally, or is very large—as large collections take more time to initialize.

You can easily create an instance of one type of dictionary from the other using the initializer
initWithDictionary: or the convenience constructor dictionaryWithDictionary:.

In general, you instantiate a dictionary by sending one of the dictionary...messages to either the
NSDictionaryorNSMutableDictionary class. Thedictionary...messages return a dictionary containing
the keys and values you pass in as arguments. Objects added as values to a dictionary are not copied (unless
you pass YES as the argument to initWithDictionary:copyItems:). Rather, a strong reference to the
object is added to the dictionary. For information on how a dictionary handles key objects, see “Using Custom
Keys” (page 25). For more information on copying and memory management, see “Copying Collections” (page
41).

Internally, a dictionary uses a hash table to organize its storage and to provide rapid access to a value given
the corresponding key. However, the methods defined for dictionaries insulate you from the complexities of
working with hash tables, hashing functions, or the hashed value of keys. The methods take keys directly, not
in their hashed form.

Note: If the key objects have a good hash function, accessing an element, setting an element, and
removing an element all take constant time. With a poor hash function (one that causes frequent
hash collisions), these operations take up to linear time. Classes such as NSString that are part of
Foundation have a good hash function.

Using Mutable Dictionaries
When removing an entry from a mutable dictionary, remember that the dictionary’s strong reference to the
key and value objects that make up the entry are discarded. If there are no further strong references to the
objects, they’re deallocated.

Adding objects to a mutable dictionary is relatively straightforward. To add a single key-value pair, or to replace
the object for a particular key, use the setObject:forKey: instance method, as shown in Listing 1.

Listing 1 Adding objects to a dictionary

NSString *last = @"lastName";

NSString *first = @"firstName";

Dictionaries: Collections of Keys and Values
Using Mutable Dictionaries

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

23

NSMutableDictionary *dict = [NSMutableDictionary dictionaryWithObjectsAndKeys:

@"Jo", first, @"Smith", last, nil];

NSString *middle = @"middleInitial";

[dict setObject:@"M" forKey:MIDDLE];

You can also add entries from another dictionary using the addEntriesFromDictionary: instance method.
If both dictionaries contain the same key, the receiver’s previous value object for that key is released and the
new object takes its place. For example, after the code in Listing 2 executes, dictwould have a value of “Jones”
for the key “lastName”.

Listing 2 Adding entries from another dictionary

NSString *last = @"lastName";

NSString *first = @"firstName";

NSString *suffix = @"suffix";

NSString *title = @"title";

NSMutableDictionary *dict = [NSMutableDictionary dictionaryWithObjectsAndKeys:

@"Jo", first, @"Smith", last, nil];

NSDictionary *newDict = [NSDictionary dictionaryWithObjectsAndKeys:

@"Jones", last, @"Hon.", title, @"J.D.", suffix, nil];

[dict addEntriesFromDictionary: newDict];

Sorting a Dictionary
NSDictionary provides the method keysSortedByValueUsingSelector:, which returns an array of the
dictionary’s keys in the order they would be in if the dictionary were sorted by its values, as illustrated in Listing
3.

Listing 3 Sorting dictionary keys by value

NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:

[NSNumber numberWithInt:63], @"Mathematics",

Dictionaries: Collections of Keys and Values
Sorting a Dictionary

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

24

[NSNumber numberWithInt:72], @"English",

[NSNumber numberWithInt:55], @"History",

[NSNumber numberWithInt:49], @"Geography",

nil];

NSArray *sortedKeysArray =

[dict keysSortedByValueUsingSelector:@selector(compare:)];

// sortedKeysArray contains: Geography, History, Mathematics, English

You can also use blocks to easily sort a dictionary’s keys based on their corresponding values. The
keysSortedByValueUsingComparator: method of NSDictionary allows you to use a block to compare
the keys to be sorted into a new array. Listing 4 illustrates sorting with a block.

Listing 4 Blocks ease custom sorting of dictionaries

NSArray *blockSortedKeys = [dict keysSortedByValueUsingComparator: ^(id obj1, id
obj2) {

if ([obj1 integerValue] > [obj2 integerValue]) {

return (NSComparisonResult)NSOrderedDescending;

}

if ([obj1 integerValue] < [obj2 integerValue]) {

return (NSComparisonResult)NSOrderedAscending;

}

return (NSComparisonResult)NSOrderedSame;

}];

Using Custom Keys
In most cases, Cocoa-provided objects such as NSString objects should be sufficient for use as keys. In some
cases, however, it may be necessary to use custom objects as keys in a dictionary. When using custom objects
as keys, there are some important points to keep in mind.

Dictionaries: Collections of Keys and Values
Using Custom Keys

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

25

Keys must conform to the NSCopying protocol. Methods that add entries to dictionaries—whether as part of
initialization (for all dictionaries) or during modification (for mutable dictionaries)— don’t add each key object
to the dictionary directly. Instead, they copy each key argument and add the copy to the dictionary. After being
copied into the dictionary, the dictionary-owned copies of the keys should not be modified.

Keys must implement the hash and isEqual: methods because a dictionary uses a hash table to organize
its storage and to quickly access contained objects. In addition, performance in a dictionary is heavily dependent
on the hash function used. With a bad hash function, the decrease in performance can be severe. For more
information on the hash and isEqual: methods see NSObject.

Dictionaries: Collections of Keys and Values
Using Custom Keys

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

26

Important: Because the dictionary copies each key, keys must conform to the NSCopying protocol. Bear
this in mind when choosing what objects to use as keys. Although you can use any object that adopts the
NSCopying protocol and implements the hash and isEqual: methods, it is typically bad design to use
large objects, such as instances of NSImage, because doing so may incur performance penalties.

Using Map Tables

iOS Note: The NSMapTable class is not available in iOS.

The NSMapTable class is configured by default to hold objects much like NSMutableDictionary. It also
allows additional storage options that you can tailor for specific cases, such as when you need advanced memory

management options, or when you want to hold a specific type of pointer. For example, the map table in Figure
2 is configured to hold weak references to its value objects. You can also specify whether you want to copy
objects entered into the array.

Figure 2 Map table object ownership

You can use an NSMapTable object when you want a collection of key-value pairs that uses weak references.
For example, suppose you have a global map table that contains some objects. Because global objects are
never collected, none of its contents can be deallocated unless they are held weakly. Map tables configured

Dictionaries: Collections of Keys and Values
Using Map Tables

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

27

to hold objects weakly do not own their contents. If there are no strong references to objects within such a
map table, those objects are deallocated. For example, the map table in Figure 2 (page 27) holds weak references
to its contents. Object D and Object E will be deallocated, but the rest of the objects remain.

To create a map table, create or initialize it using mapTableWithKeyOptions:valueOptions: or
initWithKeyOptions:valueOptions:capacity: and the appropriate pointer functions options.
Alternatively, you can initialize it using
initWithKeyPointerFunctions:valuePointerFunctions:capacity: and appropriate instances of
NSPointerFunctions. For more information on the pointer functions options, see “Pointer Function
Options” (page 47).

The NSMapTable class also defines a number of convenience constructors for creating a map table with strong
or weak references to its contents. For example, mapTableWithStrongToWeakObjects creates a map table
that holds strong references to its keys and weak references to its values. These convenience constructors
should only be used if you are storing objects.

Important: Only the options listed in NSMapTableOptions guarantee that the rest of the API will work
correctly—including copying, archiving, and fast enumeration. While other NSPointerFunctions options
are used for certain configurations, such as to hold arbitrary pointers, not all combinations of the options
are valid. With some combinations, the map table may not work correctly or may not even be initialized
correctly.

To configure a map table to use arbitrary pointers, initialize it with both the
NSPointerFunctionsOpaqueMemory and NSPointerFunctionsOpaquePersonality value options. Key
and value options do not have to be the same. When using a map table to contain arbitrary pointers, the C
function API for void * pointers should be used. For more information, see “Managing Map Tables” in Foundation
Functions Reference . For example, you can add a pointer to an int value using the approach shown in Listing
5. Note that the map table uses NSString objects as keys, and that keys are copied into the map table.

Listing 5 Map table configured for nonobject pointers

NSPointerFunctionsOptions keyOptions=NSPointerFunctionsStrongMemory |

NSPointerFunctionsObjectPersonality | NSPointerFunctionsCopyIn;

NSPointerFunctionsOptions valueOptions=NSPointerFunctionsOpaqueMemory |

NSPointerFunctionsOpaquePersonality;

NSMapTable *mapTable = [NSMapTable mapTableWithKeyOptions:keyOptions

valueOptions:valueOptions];

Dictionaries: Collections of Keys and Values
Using Map Tables

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

28

NSString *key1 = @"Key1";

NSMapInsert(mapTable, key1, someIntPtr);

You can then access that integer by using the NSMapGet function.

NSLog(@" Key1 contains: %i", *(int *) NSMapGet(mapTable, @"Key1"));

When configured to use arbitrary pointers, a map table has the risks associated with using pointers. For example,
if the pointers refer to stack-based data created in a function, those pointers are not valid outside of the
function, even if the map table is. Trying to access them will lead to undefined behavior.

Dictionaries: Collections of Keys and Values
Using Map Tables

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

29

A set is an unordered collection of objects, as shown in Figure 1. You can use sets as an alternative to arrays
when the order of elements isn’t important and performance of testing whether an object is in the set is
important. Even though arrays are ordered, testing them for membership is slower than testing sets.

Figure 1 Example set

Set Fundamentals
An NSSet object manages an immutable set of distinct objects—that is, after you create the set, you cannot
add, remove, or replace objects. You can, however, modify individual objects themselves (if they support
modification). The mutability of the collection does not affect the mutability of the objects inside the collection.
You should use an immutable set if the set rarely changes, or changes wholesale.

NSMutableSet, a subclass of NSSet, is a mutable set of distinct objects, which allows the addition and deletion
of entries at any time, automatically allocating memory as needed. You should use a mutable set if the set
changes incrementally, or is very large—as large collections take more time to initialize.

NSCountedSet, a subclass of NSMutableSet, is a mutable set to which you can add a particular object more
than once; in other words, the elements of the set aren’t necessarily distinct. A counted set is also known as a
bag . The set keeps a counter associated with each distinct object inserted. NSCountedSet objects keep track
of the number of times objects are inserted and require that objects be removed the same number of times

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

30

Sets: Unordered Collections of Objects

to completely remove the object from the set. Thus, there is only one instance of an object in a counted set,
even if the object has been added multiple times. The countForObject: method returns the number of
times the specified object has been added to this set.

The objects in a set must respond to the NSObject protocol methods hash and isEqual: (see NSObject
for more information). If mutable objects are stored in a set, either the hash method of the objects shouldn’t
depend on the internal state of the mutable objects or the mutable objects shouldn’t be modified while they’re
in the set. For example, a mutable dictionary can be put in a set, but you must not change it while it is in there.
(Note that it can be difficult to know whether or not a given object is in a collection).

NSSet provides a number of initializer methods, such as setWithObjects: and initWithArray:, that return
an NSSet object containing the elements (if any) you pass in as arguments. Objects added to a set are not
copied (unless you pass YES as the argument to initWithSet:copyItems:). Rather, a strong reference to
the object is added to the set. For more information on copying and memory management, see “Copying
Collections” (page 41).

Sets, excluding NSCountedSet, are the preferred collections if you want to be assured that no object is
represented more than once, and there is no net effect for adding an object more than once.

Note: If the objects in the set have a good hash function, accessing an element, setting an element,
and removing an element all take constant time. With a poor hash function (one that causes frequent
hash collisions), these operations take up to linear time. Classes such as NSString that are part of
Foundation have a good hash function.

Mutable Sets
You can create an NSMutableSet object using any of the initializers provided by NSSet. You can create an
NSMutableSet object from an instance of NSSet (or vice versa) using setWithSet: or initWithSet:.

The NSMutableSet class provides methods for adding objects to a set:

 ● addObject: adds a single object to the set.

 ● addObjectsFromArray: adds all objects from a specified array to the set.

 ● unionSet: adds all the objects from another set which are not already present.

The NSMutableSet class additionally provides these methods to remove objects from a set:

 ● intersectSet: removes all the objects which are not in another set.

 ● removeAllObjects removes all the objects from the set.

Sets: Unordered Collections of Objects
Mutable Sets

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

31

 ● removeObject: removes a particular object from the set.

 ● minusSet: removes all the objects which are in another set.

Because NSCountedSet is a subclass of NSMutableSet, it inherits all of these methods. However, some of
them behave slightly differently with NSCountedSet. For example:

 ● unionSet: adds all the objects from another set, even if they are already present.

 ● intersectSet: removes all the objects which are not in another set. If there are multiple instances of
the same object in either set, the resulting set contains that object as many times as the set with fewer
instances.

 ● minusSet: removes all the objects which are in another set. If an object is present more than once in the
counted set, it only removes one instance of it.

Using Sets
The NSSet class provides methods for querying the elements of the set:

 ● allObjects returns an array containing the objects in a set.

 ● anyObject returns some object in the set. (The object is chosen at convenience not at random.)

 ● count returns the number of objects currently in the set.

 ● member: returns the object in the set that is equal to a specified object.

 ● intersectsSet: tests whether two sets share at least one object.

 ● isEqualToSet: tests whether two sets are equal.

 ● isSubsetOfSet: tests whether all of the objects contained in the set are also present in another set.

The NSSet method objectEnumerator lets you traverse elements of the set one by one. And
themakeObjectsPerformSelector: andmakeObjectsPerformSelector:withObject:methods provide
for sending messages to individual objects in the set. In most cases, fast enumeration should be used because
it is faster and more flexible than using an NSEnumerator or the makeObjectsPerformSelector:method.
For more on enumeration, see “Enumeration: Traversing a Collection’s Elements” (page 44).

Sets: Unordered Collections of Objects
Using Sets

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

32

Hash Tables

iOS Note: The NSHashTable class is not available in iOS.

The NSHashTable class is configured by default to hold objects much like NSMutableSet does. It also allows
additional storage options that you can tailor for specific cases, such as when you need advanced memory

management options, or when you want to hold a specific type of pointer. For example, the map table in Figure
2 is configured to hold weak references to its elements. You can also specify whether you want to copy objects
entered into the set.

Figure 2 Hash table object ownership

You can use an NSHashTable object when you want an unordered collection of elements that uses weak
references. For example, suppose you have a global hash table that contains some objects. Because global
objects are never collected, none of its contents can be deallocated unless they are held weakly. Hash tables
configured to hold objects weakly do not own their contents. If there are no strong references to objects within
such a hash table, those objects are deallocated. For example, the hash table in Figure 2 (page 33) holds weak
references to its contents. Objects A, C, and Z will be deallocated, but the rest of the objects remain.

To create a hash table, initialize it using the initWithOptions:capacity: method and the appropriate
pointer functions options. Alternatively, you can initialize it using initWithPointerFunctions:capacity:
and appropriate instances of NSPointerFunctions. For more information on the various pointer functions
options, see “Pointer Function Options” (page 47).

The NSHashTable class also defines the hashTableWithWeakObjects convenience constructor for creating
a hash table with weak references to its contents. It should only be used if you are storing objects.

Sets: Unordered Collections of Objects
Hash Tables

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

33

Important: Only the options listed in NSHashTableOptions guarantee that the rest of the API will work
correctly—including copying archiving and fast enumeration. While other NSPointerFunctions options
are used for certain configurations, such as to hold arbitrary pointers, not all combinations of the options
are valid. With some combinations the hash table may not work correctly, or may not even be initialized
correctly.

To configure a hash table to use arbitrary pointers, initialize it with both the
NSPointerFunctionsOpaqueMemory and NSPointerFunctionsOpaquePersonality options. When
using a hash table to contain arbitrary pointers, the C function API for void * pointers should be used. For
more information, see “Hash Tables” in Foundation Functions Reference . For example, you can add a pointer to
an int value using the approach shown in Listing 1.

Listing 1 Hash table configured for nonobject pointers

NSHashTable *hashTable=[[NSHashTable alloc] initWithOptions:

NSPointerFunctionsOpaqueMemory |NSPointerFunctionsOpaquePersonality

capacity: 1];

NSHashInsert(hashTable, someIntPtr);

When configured to use arbitrary pointers, a hash table has the risks associated with using pointers. For example,
if the pointers refer to stack-based data created in a function, those pointers are not valid outside of the
function, even if the hash table is. Trying to access them will lead to undefined behavior.

Sets: Unordered Collections of Objects
Hash Tables

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

34

You use index sets to store indexes into some other data structure, such as an NSArray object. Each index in
an index set can only appear once, which is why index sets are not suitable for storing arbitrary collections of
integers. Because index sets (as in Figure 1) make use of ranges to store indexes, they are usually more efficient
than storing a collection of integer values, such as in an array.

Figure 1 Index set and array interaction

Index Set Fundamentals
An NSIndexSet object manages an immutable set of indexes—that is, after you create the index set, you
cannot add indexes to it or remove indexes from it.

An NSMutableIndexSet object manages a mutable index set, which allows the addition and deletion of
indexes at any time, automatically allocating memory as needed.

You can easily create an instance of one type of index set from the other using the initializer
initWithIndexSet:. This is particularly useful if you want to create an immutable index set containing
disjoint sets of indexes, which are typically created using mutable index sets. For example, if you have an
NSMutableIndexSet object named myIndexes, which has had the indexes added to it, you can create an
immutable copy as follows:

NSIndexSet *myImmutableIndexes=[[NSIndexSet alloc] initWithIndexSet: myIndexes];

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

35

Index Sets: Storing Indexes into an Array

You can also initialize an index set from a single index or a range of indexes by using the initWithIndex:
or initWithIndexesInRange: method.

Mutable Index Sets
The methods of the NSMutableIndexSet class allow you to add or remove additional indexes or index ranges.
You can, for example, store disjoint sets of indexes and modify preexisting sets of indexes as needed. Some of
these methods are listed below:

addIndex:

addIndexesInRange:

removeIndex:

removeIndexesInRange:

If you have an empty NSMutableIndexSet object named myDisjointIndexes, you can fill it with the
indexes: 1, 2, 5, 6, 7, and 10, as shown in Listing 1.

Listing 1 Adding indexes to a mutable index set

[myDisjointIndexes addIndexesInRange: NSMakeRange(1,2)];

[myDisjointIndexes addIndexesInRange: NSMakeRange(5,3)];

[myDisjointIndexes addIndex: 10];

Iterating Through Index Sets
To access all of the objects indexed by an index set, it may be convenient to iterate sequentially through the
index set. Iterating through the index set, rather than through the corresponding array, is more efficient, as it
allows you to examine only the indexes that you are interested in. If you have an NSArray object named
anArray and an NSIndexSet object named anIndexSet, you can iterate forward through an index set as
shown in Listing 2.

Listing 2 Forward iteration through an index set

NSUInteger index=[anIndexSet firstIndex];

while(index != NSNotFound)

Index Sets: Storing Indexes into an Array
Mutable Index Sets

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

36

{

NSLog(@" %@",[anArray objectAtIndex:index]);

index=[anIndexSet indexGreaterThanIndex: index];

}

Sometimes it may be necessary to iterate backward through an index set, for example, when you want to
selectively remove objects from indexes from an NSMutableArray object. You can iterate backward through
an index set as shown in Listing 3.

Listing 3 Reverse iteration through an index set

NSUInteger index=[anIndexSet lastIndex];

while(index != NSNotFound)

{

if([[aMutableArray objectAtIndex: index] isEqualToString:@"G"]){

[aMutableArray removeObjectAtIndex:index];

}

index=[anIndexSet indexLessThanIndex: index];

}

The above approach should be used only if you want to selectively remove objects referred to by an index set.
If you want to remove the objects at all the indexes in an index set, use removeObjectsAtIndexes: instead.

Index Sets and Blocks
Index sets are especially powerful when used in conjunction with blocks. Blocks allow you to create index sets
that designate the members of an array which pass some test. For example, if you have an unsorted array of
numbers and you want to create an index set which holds indexes to all numbers less than 20, you use something
similar to Listing 4.

Listing 4 Creating an index set from an array using a block

NSIndexSet *lessThan20=[someArray indexesOfObjectsPassingTest:^(id obj, NSUInteger
index, BOOL *stop){

Index Sets: Storing Indexes into an Array
Index Sets and Blocks

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

37

if ([obj isLessThan:[NSNumber numberWithInt:20]]){

return YES;

}

return NO;

}];

Index sets can also be used in block-based enumeration of an array. To enumerate only the indexes of the
array contained in the index set, use the enumerateObjectsAtIndexes:options:usingBlock: method.

Alternatively, the index set itself can be enumerated using a block with the enumerateIndexesUsingBlock:
method. For example, you can perform some task for each object whose index is in the set. You can even
access objects from multiple arrays provided the index set is valid for the arrays used, as in Listing 5.

Listing 5 Enumerating an index set to access multiple arrays

[anIndexSet enumerateIndexesUsingBlock:^(NSUInteger idx, BOOL *stop){

if([[firstArray objectAtIndex: idx] isEqual:[secondArray objectAtIndex: idx]]){

NSLog(@"Objects at %i Equal",idx);

}

}];

Index Sets: Storing Indexes into an Array
Index Sets and Blocks

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

38

Index paths store the path through a nested set of arrays and are used to retrieve an object in a more
complicated collection hierarchy, such as a tree. Figure 1, for example, shows a nested set of arrays which
represents the hierarchy of a hypothetical company.

Figure 1 Nested arrays and index paths

Index Path Fundamentals
If you consider the hierarchy of the hypothetical company shown in Figure 1 (page 39), the root array consists
of a single entry for the CEO. The array below that consists of the various vice presidents. Below each vice
president is an array of directors, and so on. If you want to store the position of a particular employee on the
Europe marketing team, for instance, a simple index is not enough. Instead a path through the nested arrays
is necessary. In this case, Bill T. can be represented by the index path 0.0.1.1.2.

You can create an index path using from a single index or from a C-style array of NSUInteger values. Listing
1 shows how to create the index path to Bill T.

Listing 1 Creating an index path from an array

NSUInteger arrayLength = 5;

NSUInteger integerArray[] = {0,0,1,1,2};

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

39

Index Paths: Storing a Path Through Nested Arrays

NSIndexPath *aPath = [[NSIndexPath alloc] initWithIndexes:integerArray
length:arrayLength];

You can also create an index path automatically from many of the more complex hierarchy collection classes.
See the indexPath method of the NSTreeNode class for an example.

Using Index Paths
NSIndexPath provides methods for querying the elements in the path. For example, indexAtPosition:
returns the index stored at the given position in the index path. You can also create new index paths by adding
a new index or removing the last index. A few classes use index paths extensively to manage their contents.
NSTreeController is one such example. For more information on NSTreeController and index paths,
see Cocoa Bindings Programming Topics .

In iOS, UITableView and its delegate and data source use index paths to manage much of their content and
to handle user interaction. To assist with this, UIKit adds programming interfaces to NSIndexPath to incorporate
the rows and sections of a table view more fully into index paths. For more information, see NSIndexPath UIKit
Additions . For instance, index paths are used to designate user selections using the
tableView:didSelectRowAtIndexPath: delegate method.

Index Paths: Storing a Path Through Nested Arrays
Using Index Paths

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

40

There are two kinds of object copying: shallow copies and deep copies. The normal copy is a shallow copy that
produces a new collection that shares ownership of the objects with the original. Deep copies create new
objects from the originals and add those to the new collection. This difference is illustrated by Figure 1.

Figure 1 Shallow copies and deep copies

Shallow Copies
There are a number of ways to make a shallow copy of a collection. When you create a shallow copy, the objects
in the original collection are sent a retain message and the pointers are copied to the new collection. Listing
1 shows some of the ways to create a new collection using a shallow copy.

Listing 1 Making a shallow copy

NSArray *shallowCopyArray = [someArray copyWithZone:nil];

NSDictionary *shallowCopyDict = [[NSDictionary alloc]
initWithDictionary:someDictionary copyItems:NO];

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

41

Copying Collections

These techniques are not restricted to the collections shown. For example, you can copy a set with the
copyWithZone: method—or the mutableCopyWithZone: method—or an array with
initWithArray:copyItems: method.

Deep Copies
There are two ways to make deep copies of a collection. You can use the collection’s equivalent of
initWithArray:copyItems: with YES as the second parameter. If you create a deep copy of a collection
in this way, each object in the collection is sent a copyWithZone: message. If the objects in the collection
have adopted the NSCopying protocol, the objects are deeply copied to the new collection, which is then the
sole owner of the copied objects. If the objects do not adopt the NSCopying protocol, attempting to copy
them in such a way results in a runtime error. However, copyWithZone: produces a shallow copy. This kind
of copy is only capable of producing a one-level-deep copy. If you only need a one-level-deep copy, you can
explicitly call for one as in Listing 2.

Listing 2 Making a deep copy

NSArray *deepCopyArray=[[NSArray alloc] initWithArray:someArray copyItems:YES];

This technique applies to the other collections as well. Use the collection’s equivalent of
initWithArray:copyItems: with YES as the second parameter.

If you need a true deep copy, such as when you have an array of arrays, you can archive and then unarchive
the collection, provided the contents all conform to the NSCoding protocol. An example of this technique is
shown in Listing 3.

Listing 3 A true deep copy

NSArray* trueDeepCopyArray = [NSKeyedUnarchiver unarchiveObjectWithData:

[NSKeyedArchiver archivedDataWithRootObject:oldArray]];

Copying and Mutability
When you copy a collection, the mutability of that collection or the objects it contains can be affected. Each
method of copying has slightly different effects on the mutability of the objects in a collection of arbitrary
depth:

Copying Collections
Deep Copies

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

42

 ● copyWithZone:makes the surface level immutable. All deeper levels have the mutability they previously
had.

 ● initWithArray:copyItems: with NO as the second parameter gives the surface level the mutability
of the class it is allocated as. All deeper levels have the mutability they previously had.

 ● initWithArray:copyItems: with YES as the second parameter gives the surface level the mutability
of the class it is allocated as. The next level is immutable, and all deeper levels have the mutability they
previously had.

 ● Archiving and unarchiving the collection leaves the mutability of all levels as it was before.

Copying Collections
Copying and Mutability

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

43

Cocoa defines three main ways to enumerate the contents of a collection. These include fast enumeration and
block-based enumeration. There is also the NSEnumerator class, though it has generally been superseded by
fast enumeration.

Fast Enumeration
Fast enumeration is the preferred method of enumerating the contents of a collection because it provides the
following benefits:

 ● The enumeration is more efficient than using NSEnumerator directly.

 ● The syntax is concise.

 ● The enumerator raises an exception if you modify the collection while enumerating.

 ● You can perform multiple enumerations concurrently.

The behavior for fast enumeration varies slightly based on the type of collection. Arrays and sets enumerate
their contents, and dictionaries enumerate their keys. NSIndexSet and NSIndexPath do not support fast
enumeration. You can use fast enumeration with collection objects, as shown in Listing 1.

Listing 1 Using fast enumeration with a dictionary

for (NSString *element in someArray) {

NSLog(@"element: %@", element);

}

NSString *key;

for (key in someDictionary){

NSLog(@"Key: %@, Value %@", key, [someDictionary objectForKey: key]);

}

For more information on fast enumeration, see “Fast Enumeration” in The Objective-C Programming Language .

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

44

Enumeration: Traversing a Collection’s Elements

Using Block-Based Enumeration
NSArray, NSDictionary, and NSSet allow enumeration of their contents using blocks. To enumerate with
a block, invoke the appropriate method and specify the block to use. Listing 2 demonstrates block-based
enumeration for an NSArray object.

Listing 2 Block-based enumeration of an array

NSArray *anArray = [NSArray arrayWithObjects:@"A", @"B", @"D", @"M", nil];

NSString *string = @"c";

[anArray enumerateObjectsUsingBlock:^(id obj, NSUInteger index, BOOL *stop){

if ([obj localizedCaseInsensitiveCompare:string] == NSOrderedSame) {

NSLog(@"Object Found: %@ at index: %i",obj, index);

*stop = YES;

}

}];

For an NSSet object, you can use similar code, as shown in Listing 3.

Listing 3 Block-based enumeration of a set

NSSet *aSet = [NSSet setWithObjects: @"X", @"Y", @"Z", @"Pi", nil];

NSString *aString = @"z";

[aSet enumerateObjectsUsingBlock:^(id obj, BOOL *stop){

if ([obj localizedCaseInsensitiveCompare:aString]==NSOrderedSame) {

NSLog(@"Object Found: %@", obj);

*stop = YES;

}

}];

For NSArray enumeration, the index parameter is useful for concurrent enumeration. Without this parameter,
the only way to access the index would be to use the indexOfObject:method, which is inefficient. The stop
parameter is important for performance, because it allows the enumeration to stop early based on some
condition determined within the block. The block-based enumeration methods for the other collections are
slightly different in name and in block signature. See the respective class references for the method definitions.

Enumeration: Traversing a Collection’s Elements
Using Block-Based Enumeration

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

45

Using an Enumerator
NSEnumerator is a simple abstract class whose subclasses enumerate collections of other objects. Collection
objects—such as arrays, sets, and dictionaries—provide specialNSEnumerator objects with which to enumerate
their contents. You send nextObject repeatedly to a newly created NSEnumerator object to have it return
the next object in the original collection. When the collection is exhausted, it returns nil. You can’t “reset” an
enumerator after it’s exhausted its collection. To enumerate a collection again, you must create a new
enumerator.

Collection classes such as NSArray, NSSet, and NSDictionary include methods that return an enumerator
appropriate to the type of collection. For instance, NSArray has two methods that return an NSEnumerator
object: objectEnumerator and reverseObjectEnumerator. The NSDictionary class also has two
methods that return an NSEnumerator object: keyEnumerator and objectEnumerator. These methods
let you enumerate the contents of an NSDictionary object by key or by value, respectively.

In Objective-C, an NSEnumerator object retains the collection over which it’s enumerating (unless it is
implemented differently by a custom subclass).

It is not safe to remove, replace, or add to a mutable collection’s elements while enumerating through it. If
you need to modify a collection during enumeration, you can either make a copy of the collection and enumerate
using the copy or collect the information you require during the enumeration and apply the changes afterwards.
The second pattern is illustrated in Listing 4.

Listing 4 Enumerating a dictionary and removing objects

NSMutableDictionary *myMutableDictionary = /* ... */ ;

NSMutableArray *keysToDeleteArray =

[NSMutableArray arrayWithCapacity:[myMutableDictionary count]];

NSString *aKey;

NSEnumerator *keyEnumerator = [myMutableDictionary keyEnumerator];

while (aKey = [keyEnumerator nextObject])

{

if (/* test criteria for key or value */) {

[keysToDeleteArray addObject:aKey];

}

}

[myMutableDictionary removeObjectsForKeys:keysToDeleteArray];

Enumeration: Traversing a Collection’s Elements
Using an Enumerator

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

46

The pointer collection classes (NSPointerArray, NSMapTable, and NSHashTable) allow you to further
customize the collection to tailor it to your memory and storage needs. The options specified by
NSPointerFunctionsOptions provide a convenient interface for customizing how the collection manages
the pointers it contains.

iOS Note: The pointer collection classes and the corresponding options are not available on iOS.

Pointer Collection Fundamentals
Pointer collections are configured using options from three different categories: memory options, personality
options, and copying behavior. Not all combinations of memory, personality, and copying options are valid.

Memory options specify the expected behavior for when items are added to the collection, removed from the
collection, or copied. A few of the more common options include:

 ● NSPointerFunctionsStrongMemory, which is used for a collection that holds strong references to its
contents.

 ● NSPointerFunctionsZeroingWeakMemory, which is used for a collection that holds weak references
to its contents.

 ● NSPointerFunctionsOpaqueMemory, which is used for cases when ownership of the contents is
managed completely outside a collection. It is often used for collections that hold pointers to primitive
types such as integers or C-strings.

Personality options specify the type of pointers stored in the collection, such as pointers to objects or pointers
to objects. They also specify what happens for hashing and equality tests. A few of the more common options
include:

 ● NSPointerFunctionsObjectPersonality, which is used for a collection that holds objects and uses
isEqual: to determine equality.

 ● NSPointerFunctionsObjectPointerPersonality, which is often used for a collection that holds
objects and uses direct comparison to determine equality.

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

47

Pointer Function Options

 ● NSPointerFunctionsOpaquePersonality, which is often used for a collection that holds pointers to
primitive types such as integers or C-strings.

Copy options specify whether the collection should copy the elements entered into the collection. If the
NSPointerFunctionsCopyIn option is specified, the collection copies the elements entered; otherwise, it
does not.

If you need greater customization than the NSPointerFunctionsOptions allow, you can use the
NSPointerFunctions class to define custom functions for operations like memory allocation, hashing, and
equality testing. For example, if you have a collection of structs, you would need to specify the size of the
struct.

Configuring Pointer Collections to Hold Objects
If you want to configure a pointer collection to hold objects, there are a few options. For objects, only two
personality options make sense:

 ● NSPointerFunctionsObjectPersonality, the default object option, uses the isEqual: method for
determining equality.

 ● NSPointerFunctionsObjectPointerPersonality, also a viable option, uses pointer equality to
determine equality.

You can also choose to use either strong references or zeroing weak references. If you choose to use strong
references, you can also choose whether you want objects to be copied when they are added to the collection.

For example, if you want a collection to hold weak references to objects and use isEqual: to determine
equality, you can specify the options as follows:

NSPointerFunctionsOptions collectionOptions = NSPointerFunctionsObjectPersonality

| NSPointerFunctionsZeroingWeakMemory;

After specifying the options, collectionOptions can then be passed to a collection during initialization.

Pointer Function Options
Configuring Pointer Collections to Hold Objects

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

48

Configuring Pointer Collections for Arbitrary Pointer Use
If you want to configure a pointer collection to hold arbitrary (nonobject) pointers, you have some flexibility
to configure the collection based on the type of pointer the collection will hold. For the most flexibility, you
can select the NSPointerFunctionsOpaquePersonality, which allows you to hold pointers to most
primitive types. You can also select one of the type-specific options:

 ● NSPointerFunctionsIntegerPersonality holds integer pointers.

 ● NSPointerFunctionsStructPersonality holds pointers to structs. If you specify this option you
must set the sizeFunction property of the NSPointerFunctions object that you use.

 ● NSPointerFunctionsCStringPersonality holds pointers to C-strings.

You should typically use NSPointerFunctionsOpaqueMemorywhen dealing with arbitrary pointers because
it is compatible with all of the personality options. If you need to, you can use
NSPointerFunctionsMallocMemory or NSPointerFunctionsMachVirtualMemory with the opaque,
C-string, and struct personalities, although this is not typically recommended.

The only arbitrary pointer configurations that support copy-in behavior are the C-string and struct personalities
when using either malloc or Mach virtual memory.

If you want a collection to hold arbitrary pointers using opaque memory, you can specify the options as follows:

NSPointerFunctionsOptions collectionOptions = NSPointerFunctionsOpaquePersonality

| NSPointerFunctionsOpaqueMemory;

After specifying the options, collectionOptions can then be passed to a collection during initialization.

Pointer Function Options
Configuring Pointer Collections for Arbitrary Pointer Use

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

49

This table describes the changes to Collections Programming Topics .

NotesDate

Added information about index sets, index paths, hash tables, and map
tables.

2010-09-01

Added links to related concepts.2009-08-14

Corrected typographical errors.2009-07-23

Corrected a code example showing indexOfObjectIdenticalTo:.2009-02-04

Added note stating that the predicate classes are not available in iOS.2008-06-05

Updated for OS X v10.5. Fixed various minor errors.2007-10-31

Changed examples in Sorting and Filtering NSArray Objects to use localized
comparisons.

2007-07-10

Augmented description of searching for objects in an array.2006-11-07

Revised "Arrays" article to clarify usage patterns.2006-09-05

Changed document name from "Collections."2006-06-28

Revision history was added to existing topic. It will be used to record
changes to the content of the topic.

2002-11-12

2010-09-01 | © 2010 Apple Inc. All Rights Reserved.

50

Document Revision History

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer for personal use only and to print
copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.

No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-labeled computers.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Cocoa Touch, Mac,
Objective-C, and OS X are trademarks of Apple
Inc., registered in the U.S. and other countries.

iOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer,
agent, or employee is authorized to make any
modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other
rights which vary from state to state.

	Collections Programming Topics
	Contents
	Figures and Listings
	Introduction
	Arrays: Ordered Collections
	Array Fundamentals
	Mutable Arrays
	Using Arrays
	Sorting Arrays
	Sorting with Sort Descriptors
	Sorting with Blocks
	Sorting with Functions and Selectors

	Filtering Arrays
	Pointer Arrays

	Dictionaries: Collections of Keys and Values
	Dictionary Fundamentals
	Using Mutable Dictionaries
	Sorting a Dictionary
	Using Custom Keys
	Using Map Tables

	Sets: Unordered Collections of Objects
	Set Fundamentals
	Mutable Sets
	Using Sets
	Hash Tables

	Index Sets: Storing Indexes into an Array
	Index Set Fundamentals
	Mutable Index Sets
	Iterating Through Index Sets
	Index Sets and Blocks

	Index Paths: Storing a Path Through Nested Arrays
	Index Path Fundamentals
	Using Index Paths

	Copying Collections
	Shallow Copies
	Deep Copies
	Copying and Mutability

	Enumeration: Traversing a Collection’s Elements
	Fast Enumeration
	Using Block-Based Enumeration
	Using an Enumerator

	Pointer Function Options
	Pointer Collection Fundamentals
	Configuring Pointer Collections to Hold Objects
	Configuring Pointer Collections for Arbitrary Pointer Use

	Revision History

