Error Handling
Programming Guide

Developer

Contents

Introduction to Error Handling Programming Guide For Cocoa 5
Organization of This Document 5
See Also 6

Error Objects, Domains, and Codes 7
Why Have Error Objects? 7
Error Domains 7
Error Codes 8
The User Info Dictionary 10
Localized Error Information 11
The Recovery Attempter 13
Underlying Error 13
Domain-Specific Keys 14

Using and Creating Error Objects 15
Handling Error Objects Returned From Methods 15
Error-Handling Alternatives in Mac OS X 17
Displaying Information From Error Objects 17
Propagating Errors for Display by the Application Object (Mac OS X) 19
Creating and Returning NSError Objects 21
A Note on Errors and Exceptions 23

Error Responders and Error Recovery 24
The Error-Responder Chain 24

Error Customization 27

Error Recovery 28

Handling Received Errors 30
Passing Errors Up the Error-Responder Chain 30
Customizing an Error Object 31

Recovering From Errors 34

Document Revision History 39

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

2

Contents

Index 40

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

3

Figures, Tables, and Listings

Error Objects, Domains, and Codes 7

Figure 1-1 The localized strings of an NSError object 12

Table 1-1 Header files for error codes in major domains 8

Table 1-2 Header files declaring error codes 9

Listing 1-1 Part of the POSIX error-code declarations (errno.h) 9
Listing 1-2 Testing for particular error codes in a specific domain 10

Using and Creating Error Objects 15

Listing 2-1 Handling an NSError object returned from a AppKit method 15
Listing 2-2 Displaying an alert composed mostly from error-object attributes 17
Listing 2-3 Assigning custom message strings based on error domain and code 18
Listing 2-4 Displaying a document-modal error alert 20

Listing 2-5 Modal delegate handling the user response 20

Listing 2-6 Directly displaying an error alert dialog 20

Listing 2-7 Implementing a method that returns an NSError object 21

Error Responders and Error Recovery 24

Figure 3-1 The error-responder chain—part one 25

Figure 3-2 The error-responder chain — part two 25

Figure 3-3 Error-responder chain for document-based applications 26

Figure 3-4 Error-responder chain for non-document applications with window controllers 26
Figure 3-5 Error-responder chain for simple (non-document) applications 27

Handling Received Errors 30
Listing 4-1 Handling an error passed up the error-responder chain 31
Listing 4-2 Customizing an NSError object 31

Recovering From Errors 34

Listing 5-1 Preparing for error recovery 35

Listing 5-2 Recovering from the error and informing the modal delegate 36
Listing 5-3 Modal delegate responding to recovery attempter 37

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

4

Introduction to Error Handling Programming Guide
For Cocoa

Every program must deal with errors as they occur at runtime. The program, for example, might not be able
to open a file, or perhaps it cannot parse an XML document. Often errors such as these require the program
to inform the user about them. And perhaps the program can attempt to get around the problem causing the

error.

Cocoa (and Cocoa Touch) offer developers programmatic tools for these tasks: the NSError class in Foundation
and new methods and mechanisms in the Application Kit to support error handling in applications. ANNSError
object encapsulates information specific to an error, including the domain (subsystem) originating the error
and the localized strings to present in an error alert. With an application there is also an architecture allowing
the various objects in an application to refine the information in an error object and perhaps to recover from
the error. This document describes this APl and architecture and explains how to use them.

Important The NSError class is available on both Mac OS X and iOS. However, the error-responder and
error-recovery APls and mechanisms are available only in the Application Kit (Mac OS X).

Although the NSError class was introduced in Mac OS X v10.3, several methods have been added to the
class and to the Application Kit in Mac OS X v10.4 to support error handling as described in this document.

Organization of This Document
Error Handling Programming Guide for Cocoa has the following articles:

= "Error Objects, Domains, and Codes” (page 7) describes the attributes of an NSError object, particularly
its domain and error code, and discusses the possible contents of an error object’s “user info” dictionary,
including localized message strings and underlying errors.

= “Using and Creating Error Objects” (page 15) explains how to evaluate an error, how to display an error
message using an NSError object, and how to implement methods that return an NSError object by
reference.

= "Error Responders and Error Recovery” (page 24) describes the Application Kit architecture for passing
error objects up a chain of objects in an application, giving each object a chance to customize the error
before it is presented. It also discusses the role of the recovery attempter, an object designated to attempt
a recovery from an error if the user requests it.

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

5

Introduction to Error Handling Programming Guide For Cocoa
See Also

- “Handling Received Errors” (page 30) discusses how, in the chain of error-responder objects, you handle
a received error and customize it.

= "Recovering From Errors” (page 34) explains the procedure for attempting a user-requested recovery from
an error.

The two chapters relevant to iOS are “Error Objects, Domains, and Codes” (page 7) and “Using and Creating
Error Objects” (page 15).

See Also

““Error Handling in the Document Architecture” in Document-Based Applications Overview offers valuable advice
for subclasses that override methods with a by-reference NSError parameter (Mac OS X).

“Types of Dialogs and When to Use Them” in Apple Human Interface Guidelines offers advice on the form and
content of alerts in Mac OS X. iOS Human Interface Guidelines offers similar advice for alerts on iOS. You should
consult these guidelines before composing your error messages. Also take a look at the following documents
discussing areas of Cocoa programming related to error handling and the presentation of error messages:

= Assertions and Logging Programming Guide (both platforms)
= Dialogs and Special Panels (alerts on Mac OS X))

= Sheet Programming Topics (Mac OS X)

= UlAlertView Class Reference (iOS)

Exception Programming Topics discusses how to raise and handle exceptions. “Exception Handling” in The
Objective-C Programming Language describes the compiler directives @t ry, @catch, @throw,and@finally,
which are used in exception handling.

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

6

Error Objects, Domains, and Codes

Cocoa programs use NSError objects to convey information about runtime errors that users need to be
informed about. In most cases, a program displays this error information in a dialog or sheet. But it may also
interpret the information and either ask the user to attempt to recover from the error or attempt to correct
the error on its own.

The core attributes of an NSError object—or, simply, an error object—are an error domain, a domain-specific
error code, and a “user info” dictionary containing objects related to the error, most significantly description
and recovery strings. This chapter explains the reason for error objects, describes their attributes, and discusses
how you use them in Cocoa code.

Why Have Error Objects?

Because they are objects, instances of the NSError class have several advantages over simple error codes and
error strings. They encapsulate several pieces of error information at once, including localized error strings of
various kinds.NSError objects can also be archived and copied, and they can be passed around in an application
and modified. And although NSError is not an abstract class (and thus can be used directly) you can extend
the NSError class through subclassing.

Because of the notion of layered error domains, NSError objects can embed errors from underlying subsystems
and thus provide more detailed and nuanced information about an error. Error objects also provide a mechanism
for error recovery by holding a reference to an object designated as the recovery attempter for the error.

Error Domains

For largely historical reasons, errors codes in Mac OS X are segregated into domains. For example, Carbon error
codes, which are typed as 0SStatus, have their origin in versions of the Macintosh operating system predating
Mac OS X. On the other hand, POSIX error codes derive from the various POSIX-conforming “flavors” of UNIX,
such as BSD. The Foundation framework declares in NSError. h the following string constants for the four
major error domains:

NSMachErrorDomain

NSPOSIXErrorDomain

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

7

Error Objects, Domains, and Codes
Error Codes

NSOSStatusErrorDomain

NSCocoaErrorDomain

The above sequence of domain constants indicates the general layering of the domains, with the Mach error
domain at the lowest layer. You get the domain of an error by sending an NSError object a domain message.

In addition to the four major domains, there are error domains that are specific to frameworks or even to groups
of classes or individual classes. For example, the Web Kit framework has its own domain for errors in its
Objective-C implementation, WebKitErrorDomain. Within the Foundation framework, the URL classes have
their own error domain (NSURLErrorDomain) as do the XML classes (NSXMLParserErrorDomain). The
NSStream class itself defines two error domains, one for SSL errors and the other for SOCKS errors.

The Cocoa error domain (NSCocoaErrorDomain) includes all error codes for the Cocoa frameworks—except,
of course, for error codes in class-specific domains of those frameworks. These frameworks include not only
Foundation, UIKit, and Application Kit, but Core Data and potentially other Objective-C frameworks. (Error
domains within the Cocoa frameworks that are separate from the Cocoa error domain were defined before
the latter was introduced.)

Domains serve several useful purposes. They give Cocoa programs a way to identify the Mac OS X subsystem
that is detecting an error. They also help to prevent collisions between error codes from different subsystems
with the same numeric value. In addition, domains allow for a causal relationship between error codes based
on the layering of subsystems; for example, an error in theNSO0SStatusErrorDomain may have an underlying
error in the NSMachErrorDomain.

You can create your own error domains and error codes for use in your own frameworks, or even in your own
applications. It is recommended that the string constant for the domain be of the form
com.company .framework_or_app .ErrorDomain.

Error Codes

An error code identifies a particular error in a particular domain. It is a signed integer assigned as the value of
a program symbol. You get the error code by sending an NSError object a code message. As listed in Table
1-1, error codes are declared and documented in one or more header files for each major domain.

Table 1-1 Header files for error codes in major domains

Domain Header file

Mach /usr/include/mach/kern_return.h
POSIX /usr/include/sys/errno.h

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

8

Error Objects, Domains, and Codes
Error Codes

Domain Header file
Carbon (0SStatus) /System/Library/Frameworks/CoreServices. framework/Frameworks/CarbonCore.
Cocoa See Table 1-2.

Table 1-2 lists the frameworks and header files where error codes in the Cocoa domain are currently declared.

Table 1-2 Header files declaring error codes

Framework/Header Description
<Foundation/FoundationErrors.h> Generic Foundation error codes
<AppKit/AppKitErrors.h> Generic Application Kit error codes
<CoreData/CoreDataErrors.h> Core Data error codes

To give an idea of how you might test for and act upon errors, let’s say you want to test for underlying POSIX
errors during an operation that writes to a file. (Underlying errors are explained in “Underlying Error” (page
13).) If you consulted the POSIX error codes declared in /usr/include/sys/errno.h, you would see a list
similar to Listing 1-1.

Listing 1-1 Part of the POSIX error-code declarations (errno.h)

#define EPERM 1 /* Operation not permitted x/
#define ENOENT 2 /* No such file or directory *x/
#define ESRCH 3 /* No such process x/
#define EINTR 4 /* Interrupted system call *x/
#define EIO 5 /* Input/output error x/
#define ENXIO 6 /* Device not configured x/
#define E2BIG 7 /* Argument list too long */
#define ENOEXEC 8 /* Exec format error x/
#define EBADF 9 /* Bad file descriptor x/
#define ECHILD 10 /* No child processes x/
#define EDEADLK 11 /* Resource deadlock avoided x/
/*x 11 was EAGAIN x/
#define ENOMEM 12 /* Cannot allocate memory *x/
#define EACCES 13 /* Permission denied x/
#define EFAULT 14 /* Bad address *#H

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

9

Error Objects, Domains, and Codes
The User Info Dictionary

You could choose the error conditions you want to test for and use them in code similar to that in Listing 1-2.

Listing 1-2 Testing for particular error codes in a specific domain

// underError is underlying-error object of a Cocoa-domain error
if ([[underError domain] isEqualToString:NSPOSIXErrorDomain]) {

switch([underError code]) {

case EIO:
{
// handle POSIX I/0 error
}
case EACCES:
{
// handle POSIX permissions error
{
// etc.

You may declare you own error codes for use by your own applications or frameworks, but the error codes
should belong to your own domain. You should never add error codes to an existing domain that you do not

" "

own.

The User Info Dictionary

Every NSError object has a “user info” dictionary to hold error information beyond domain and code. You
access this dictionary by sending a userInfo message to an NSError object. The advantage of an
NSDictionary object over another kind of container object is that it is flexible; it can even carry custom
information about an error. But all user info dictionaries contain (or can contain) several predefined string and
object values related to an error.

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

10

Error Objects, Domains, and Codes
The User Info Dictionary

Localized Error Information

An important role for NSError objects is to contain error information that programs can display in an alert
dialog or sheet. This information is usually stored in the user info dictionary as strings in several categories:
description, failure reason, recovery suggestion, and recovery options. (See Figure 1-1 (page 12) for the
placement of these strings on an alert.) When you create anNSError object, you should insert localized strings
into the dictionary, unless you want to compute them lazily.

Note Don't expect the user info dictionary of every error object to contain localized strings. A
subclass of NSError, for example, could override localizedDescription to compose these
strings on-the-fly from the error domain, code, and context instead of storing them.

You can usually access the localized information associated with an NSError object in one of two ways. You
can send objectForKey: to the user info dictionary, specifying the appropriate key. Or you can send a
equivalent message to the NSError object. However, you should send the message rather than use the
dictionary key to access a localized string. The error object might not store the string in the dictionary, instead
choosing to compose it dynamically. The dictionary is designed to be a fallback mechanism, not the sole
repository of error strings. Use the dictionary keys instead to store your own strings in the user info dictionary.

The following summaries include both the dictionary key and the method used to access the localized string:

Error description
The main description of the error, appearing in a larger, bold type face. It often includes the failure reason.
If no error description is present in the user info dictionary, NSError either constructs one from the error
domain and code or (when the domain is well-known , such asNSCocoaErrorDomain), attempts to
fetch a suitable string from a function or method within that domain. .

User info key:NSLocalizedDescriptionKey
Method: localizedDescription (never returns nil)

Failure reason
A brief sentence that explains the reason why the error occurred. It is typically part of the error description.
Methods such as presentError: do not automatically display the failure reason because it is already
included in the error description. The failure reason is for clients that only want to display the reason for
the failure.

User info key:NSLocalizedFailureReasonErrorKey

Method: localizedFailureReason (can return nil)

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

1

Error Objects, Domains, and Codes
The User Info Dictionary

Note An example can help to clarify the relationship between error description and failure reason. An error object has
an error description of “File could not be saved because the disk is full.” The accompanying failure reason is “The disk
is full.”

Recovery suggestion
A secondary sentence that ideally tells users what they can do to recover from the error. It appears beneath
the error description in a lighter type face. If the recovery suggestion refers to the buttons of the error
alert, it should use the same titles as specified for recovery options
(NSLocalizedRecoveryOptionsErrorKey). You may use this string as a purely informative message,
supplementing the error description and failure reason.

User info key: NSLocalizedRecoverySuggestionErrorKey
Method: localizedRecoverySuggestion (can return nil)

Recovery options
An array of titles (as strings) for the buttons of the error alert. By default, alert sheets and dialogs for error
messages have only the “OK” button for dismissing the alert. The first string in the array is the title of the
rightmost button, the next string is the title of the button just to the left of the first, and so on. Note that
if a recovery attempter is specified for the error object, the recovery-options array should contain more
than one string. The recovery attempter accesses the recovery options in order to interpret user choices.

User info key:NSLocalizedRecoveryOptionsErrorKey

Method: localizedRecoveryOptions (if returns nil, implies a single “OK button)

Figure 1-1 The localized strings of an NSError object

File could not be written because the disk ———— Error description
is full.
54\ Delete some files and try again? Recovery suggestion

(Cancel) € TryAgain =——— Recovery options (default)

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

12

Error Objects, Domains, and Codes
The User Info Dictionary

Note Beginning with Mac OS X version 10.4, you can use the alertWithError:class method of
NSAlert as a convenience for creating NSAlert objects to use when displaying alert dialogs or
sheets. The method extracts the localized information from the passed-in NSError object for its
message text, informative text, and button titles. You may also use the presentError: message
to display error alerts.

To internationalize your error strings, create a . strings file for each localization and place the file in an
appropriately named . lproj subdirectory of your bundle’s Resources directory. Then use one of the
NSLocalizedString macros to add localized strings to the user info dictionary of an NSError object. For
more on internationalization and string localization, see Internationalization Programming Topics .

Note For many error objects in the Cocoa error domain, the localization is performed on demand;
in these cases, the localized values are not stored in the user info dictionary.

The Recovery Attempter

AnNSError object’s user info dictionary can also contain a recovery attempter. A recovery attempter is an
object that implements one or more methods of the NSErrorRecoveryAttempting informal protocol. In
many cases, this is the same object that creates the NSError object, but it can be any other object that may
know how to recover from a particular error.

If a recovery attempter has been specified for an NSError object, and multiple recovery options have also
been specified, when the error alert is displayed and the user selects a recovery option, the recovery attempter
is given a chance to recover from the error. You access the recovery attempter by sending recoveryAttempter
to the NSError object. You can add an recovery attempter to the user info dictionary using the key
NSRecoveryAttempterErrorKey.

For more on the recovery-attempter object and its role in error handling, see “Error Responders and Error
Recovery” (page 24).

Underlying Error

The user info dictionary can sometimes include another NSError object that represents an error in a subsystem
underlying the error represented by the containing NSError. You can query this underlying error object to
obtain more specific information about the cause of the error.

You access the underlying error object by using the NSUnderlyingErrorKey dictionary key.

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

13

Error Objects, Domains, and Codes
The User Info Dictionary

Domain-Specific Keys
Many of the various error domains specify keys for accessing particular items of information from the user info

dictionary. This information supplements the other information in the error object. For example, the Cocoa
domain defines the keys NSStringEncodingErrorKey, NSURLErrorKey, and NSFilePathErrorKey.

Check the header files or documentation of error domains to find out what domain-specific keys they declare.

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

14

Using and Creating Error Objects

The following sections describe how to deal with NSError objects returned from framework methods, how to
display error messages using error objects, how to create error objects, and how to implement methods that
return error objects by reference.

Handling Error Objects Returned From Methods

Many methods of the Cocoa and Cocoa Touch classes include as their last parameter a direct or indirect reference
to an NSError object. In some Foundation and UIKit methods you find NSError objects as arguments of
delegation methods. The following declaration is from the UIKit framework’s UIWebViewDelegate protocol;
a delegate would implement a method such as this to find out if an operation failed:

— (void)webView: (UIWebView x)webView didFailLoadWithError: (NSError x)error;

Some methods of the Cocoa frameworks that you call include an indirect reference to an NSError object;
these methods typically perform an operation such as creating a document, writing a file, or loading a URL.
For example, the following method declaration is from the NSDocument class header file:

— (BOOL)writeToURL: (NSURL x)absoluteURL
ofType: (NSString *)typeName

error: (NSError xx)outError;

If a method such as this encounters an error in its implementation, it directly returns NO to indicate failure and
indirectly returns (if the client code requests it) an NSError object in the last parameter to describe the error.

If you want to evaluate the error, declare an NSError object variable before calling a method such as
writeToURL:ofType:error:. When you invoke the method, pass in a pointer to this variable. (If you are
not interested in the error, just pass NULL.) If the method directly returns nil or NO, inspect the NSError
object to determine the cause of the error or simply display an error alert. Listing 2-1 illustrates this approach.

Listing 2-1 Handling an NSError object returned from a AppKit method

NSError xtheError = nil;

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

15

Using and Creating Error Objects
Handling Error Objects Returned From Methods

BOOL success = [myDoc writeToURL: [self docURL] ofType:@"html" error:&theError];

if (success == NO) {
// Maybe try to determine cause of error and recover first.
NSAlert xtheAlert = [NSAlert alertWithError:theError];

[theAlert runModal]; // Ignore return value.

Important Success or failure is indicated by the return value of the method. Although Cocoa methods that
indirectly return error objects in the Cocoa error domain are guaranteed to return such objects if the method
indicates failure by directly returning nil or NO, you should always check that the return value is nil or
NO before attempting to do anything with the NSError object.

This code in Listing 2-1 uses the returned NSError to display an error alert to the user immediately.
(UIAlertView, the UIKit class corresponding toNSAlert, has no equivalent method for alertWithError:.)
Error objects in the Cocoa domain are always localized and ready to present to users, so they can often be
presented without further evaluation.

Instead of merely displaying an error message based on an NSError object, you could examine the object to
determine if you can do something else. For example, you might be able to perform the operation again in a
slightly different way that circumvents the error; if you do this, however, you should first request the user’s
permission to perform the modified operation.

When evaluating an NSError object, always use the object’s domain and error code as the bases of tests and
not the strings describing the error or how to recover from it. Strings are typically localized and are thus likely
to vary. With a few exceptions (such as the NSURLE rrorDomain domain), pre-existing errors returned from
Cocoa framework methods are always in the NSCocoaErrorDomain domain; however, because there are
exceptions you might want to test whether the top-level error belongs to that domain. Error objects returned
from Cocoa methods can often contain underlying error objects representing errors returned by lower
subsystems, such as the BSD layer (NSPOSIXErrorDomain).

Of course, to make a successful evaluation of an error, you have to anticipate the errors that might be returned
from a method invocation. And you should ensure that your code deals adequately with new errors that might
be returned in the future.

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

16

Using and Creating Error Objects
Displaying Information From Error Objects

Important You should always special-case test for the NSUserCancelledError error code (in the
NSCocoaErrorDomain). This code indicates that the user cancelled the operation (for example, by pressing
Command-period). In this case, you should not display any error dialog.

Error-Handling Alternatives in Mac OS X

If you are developing a Mac OS X application, there are many other things you can do upon receiving an
NSError object:

« If you know how to recover from the error, but require the user’s approval, you could create a new version
of the error object that adds a recovery attempter to it (see “Recovering From Errors” (page 34)).

= Send the error object up the error-responder chain so that other objects in the application can add to it
or try to recover from the error.

Before doing this, you might be able supplement the information in the error from the current programming
context and then create a new error object that contains this enriched information.

= If you use the returned NSError object as the basis of a new error object, either by adding a recovery
attempter or supplementary information, you can either:

= Display the message immediately.
= Pass the error on to the next error responder.

For more on customizing errors passed up the error-responder chain, see “Handling Received Errors” (page
30).

Displaying Information From Error Objects

There are several different ways to display the information in NSError objects. You could extract the localized
description (or failure reason), recovery suggestion, and the recovery options from the error object and use
them to initialize the tiles and message text of an NSAlert, UIAlertView, or UIActionSheet object (or a
Mac OS X modal document sheet). This universal approach gives you a large degree of control over the content
and presentation of the error alert.

For example, the code in Listing 2-2 composes the message text of an UIAlertView object from the localized
description and failure reason taken from the passed-in NSError object.

Listing 2-2 Displaying an alert composed mostly from error-object attributes

- (void)webView: (UIWebView x)webView didFailLoadWithError:(NSError x)error {

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

17

Using and Creating Error Objects
Displaying Information From Error Objects

NSString *titleString = @"Error Loading Page";

NSString *messageString = [error localizedDescription];

NSString *moreString = [error localizedFailureReason] ?
[error localizedFailureReason]
NSLocalizedString(@"Try typing the URL again.", nil);

messageString = [NSString stringWithFormat:@"%@. %@", messageString, moreString];

UIAlertView *alertView = [[UIAlertView alloc] initWithTitle:titleString
message:messageString delegate:self
cancelButtonTitle:@"Cancel" otherButtonTitles:nil];

[alertView show];

[alertView release];

However, you don’t have to use the localized error strings made available by the frameworks. For example, if
you think they’re not descriptive enough or want to supplement them with context-specific information, you
can identify the error by its domain and code and then substitute your own string values. Take the delegate
method used in the prior example; the error object passed to the delegate in
webView:didFailLoadWithError: is almost always of the NSURLE rrorDomain domain. You could then
find out which code of this domain is associated with the error and substitute your own string for the strings
contained in the error object. (NSURLErrorDomain and its codes are declared in NSURLError. h.) Listing 2-3
gives an example of this.

Listing 2-3 Assigning custom message strings based on error domain and code

— (void)webView: (UIWebView x)webView didFailLoadWithError:(NSError x)error {

NSString *errorMsg = nil;

if ([[error domain] isEqualToString:NSURLErrorDomain]) {
switch ([error code]) {
case NSURLErrorCannotFindHost:

errorMsg = NSLocalizedString(@"Cannot find specified host. Retype
URL.", nil);

break;

case NSURLErrorCannotConnectToHost:

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

18

Using and Creating Error Objects
Displaying Information From Error Objects

errorMsg = NSLocalizedString(@"Cannot connect to specified host.
Server may be down.", nil);

break;
case NSURLErrorNotConnectedToInternet:

errorMsg = NSLocalizedString(@"Cannot connect to the internet.
Service may not be available.", nil);

break;
default:
errorMsg = [error localizedDescription];
break;
}
} else {

errorMsg = [error localizedDescription];

UIAlertView xav = [[UIAlertView alloc] initWithTitle:
NSLocalizedString(@"Error Loading Page", nil)
message:errorMsg delegate:self
cancelButtonTitle:@"Cancel" otherButtonTitles:nil];

[av show];

[av release];

Propagating Errors for Display by the Application Object (Mac OS X)

The Application Kit provides a few shortcuts for displaying error alerts. The presentError: and the
presentError:modalForWindow:delegate:didPresentSelector:contextInfo: methods permit
you to originate an error alert that is eventually displayed by the global application object, NSApp; the former
method requests an application-modal alert and the latter a document-modal alert. You must send either of
these present-error messages to an object in the error-responder chain (see “The Error-Responder Chain” (page
24)): a view object, a window object, an NSDocument object, an NSWindowController object, an
NSDocumentController object, or NSApp. (If you send the message to a view, it should ideally be a view
object associated in some way with the condition that produced the error.) Listing 2-4 illustrates how you
might invoke the document-modal
presentError:modalForWindow:delegate:didPresentSelector:contextInfo: method.

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

19

Using and Creating Error Objects
Displaying Information From Error Objects

Listing 2-4 Displaying a document-modal error alert

NSError xtheError;

NSData xtheData = [doc dataOfType:@"xml" error:&theError];

if (!theData && theError)

[anyView presentError:theError
modalForWindow: [doc windowForSheet]
delegate:self
didPresentSelector:
@selector(didPresentErrorWithRecovery:contextInfo:)

contextInfo:nil];

After the user dismisses the alert, NSApp invokes a method (identified in the didPresentSelector: keyword)
implemented by the modal delegate. As Listing 2-5 shows, the modal delegate in this method checks whether
the recovery-attempter object (if any) managed to recover from the error and responds accordingly.

Listing 2-5 Modal delegate handling the user response

— (void)didPresentErrorWithRecovery: (BOOL) recover contextInfo:(void *)info {
if (recover == NO) { // Recovery did not succeed, or no recovery attempted.

// Proceed accordingly.

For more on the recovery-attempter object, see “Recovering From Errors” (page 34).

Sometimes you might not want to send an error object up the error-responder chain to be displayed by NSApp.
You would rather show an error alert to the user immediately, and not have to construct it yourself. The
NSAlert class provides the alertWithError: method for this purpose.

Listing 2-6 Directly displaying an error alert dialog

NSAlert xtheAlert = [NSAlert alertWithError:theError];
NSInteger button = [theAlert runModall];
if (button !'= NSAlertFirstButtonReturn) {

// handle

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

20

Using and Creating Error Objects
Creating and Returning NSError Objects

Note The presentError: and
presentError:modalForWindow:delegate:didPresentSelector:contextInfo: methods
silently ignore NSUserCancelledError errors in the NSCocoaErrorDomain domain.

Creating and Returning NSError Objects

You can declare and implement your own methods that indirectly return an NSError object. Methods that
are good candidates for NSError parameters are those that open and read files, load resources, parse formatted
text, and so on. In general, these methods should not indicate an error through the existence of an NSError
object. Instead, they should return NO or nil from the method to indicate that an error occurred. Return the
NSError object to describe the error.

If you are going to return an NSError object by reference in an implementation of such a method, you must
create the NSError object. You create an error object either by allocating it and then initializing it with the
initWithDomain: code:userInfo: method of NSError or by using the class factory method
errorWithDomain:code:userInfo:. As the keywords of both methods indicate, you must supply the
initializer with a domain (string constant), an error code (a signed integer), and a “user info” dictionary containing
descriptive and supporting information. (See “Error Objects, Domains, and Codes” (page 7) for full descriptions
of these data items.) You should ensure that all strings in the user info dictionary are localized. If you create
an NSError object with initWithDomain: code:userInfo:, you should send autorelease to it before
you return it to the caller.

Important You should only modify the NSError parameter if there is an error in your method and your
method directly returns NO. Always test to see if the parameter is non-NULL before assigning an object to
it. And never assign nil to an error parameter.

Listing 2-7 is an example of a method that, for the purpose of illustration, calls the POSIX-layer open function
to open a file. If this function returns an error, the method creates an NSError object of the
NSPOSIXErrorDomain thatis used as the underlying error of a custom error domain returned to the caller.

Listing 2-7 Implementing a method that returns an NSError object

— (NSString *)fooFromPath: (NSString *)path error: (NSError *xx)anError {

const char xfileRep = [path fileSystemRepresentation];

int fd = open(fileRep, O_RDWR|O_NONBLOCK, 0);

if (fd == -1) {

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

21

Using and Creating Error Objects
Creating and Returning NSError Objects

if (anError !'= NULL) {
NSString *description = nil;
NSDictionary *uDict = nil;

int errCode;

if (errno == ENOENT) {

description = NSLocalizedString(@"No file or directory at requested
location", @"");

errCode = MyCustomNoFileError;
} else if (errno == EIO) {

// Continue for each possible POSIX error...

// Make underlying error.

NSError xunderlyingError = [[[NSError alloc]
initWithDomain:NSPOSIXErrorDomain

code:errno userInfo:nil] autorelease];
// Make and return custom domain error.

NSArray *xobjArray = [NSArray arrayWithObjects:description,
underlyingError, path, nil];

NSArray xkeyArray = [NSArray arrayWithObjects:NSLocalizedDescriptionKey,
NSUnderlyingErrorKey, NSFilePathErrorKey, nil];
NSDictionary xeDict = [NSDictionary dictionaryWithObjects:objArray
forKeys:keyArray]l;

*anError = [[[NSError alloc] initWithDomain:MyCustomErrorDomain

code:errCode userInfo:eDict] autorelease];

¥

return nil;
}
/] v

In this example, the returned error object includes in its user info dictionary the path that caused the error.

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

22

Using and Creating Error Objects
Creating and Returning NSError Objects

As the example in Listing 2-7 shows, you can use errors that originate from underlying subsystems as the basis
for error objects that you return to callers. You can use raised exceptions that your code handles in the same
way. An NSException object is compatible with an NSError object in that its attributes are a name, a reason,
and a user info dictionary. You can easily transfer information in the exception object over to the error object.

A Note on Errors and Exceptions

Itis important to keep in mind the difference between error objects and exception objects in Cocoa and Cocoa
Touch, and when to use one or the other in your code. They serve different purposes and should not be
confused.

Exceptions (represented by NSException objects) are for programming errors, such as an array index that is
out of bounds or an invalid method argument. User-level errors (represented by NSError objects) are for
runtime errors, such as when a file cannot be found or a string in a certain encoding cannot be read. Conditions
giving rise to exceptions are due to programming errors; you should deal with these errors before you ship a
product. Runtime errors can always occur, and you should communicate these (viaNSError objects) to the
user in as much detail as is required.

Although exceptions should ideally be taken care of before deployment, a shipped application can still
experience exceptions as a result of some truly exceptional situation such as “out of memory” or “boot volume
not available.” It is best to allow the highest level of the application—the global application object itself—to
deal with these situations.

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

23

Error Responders and Error Recovery

As “Why Have Error Objects?” (page 7) points out, NSError objects bring considerable advantages to Cocoa
programming. But the Cocoa frameworks also give NSError objects a prominent role to play in architectures
for error presentation and error recovery. These architectures enhance the usefulness of error objects. They
make it possible for Cocoa applications to present users with a richer and more customizable range of messages,
and to attempt recovery from errors as well as informing users of them.

Note The error-presentation and error-recovery architectures described in this chapter are available
only on the Mac OS X platform.

The Error-Responder Chain

The Application Kit, largely through the NSResponder class, defines a mechanism known as the responder
chain by which events and action messages in an application are passed up the view hierarchy to windows
and eventually to the application object. The Application Kit defines a similar chain of objects for error handling
and presentation.

To initiate the journey of an NSError object up the error-responder chain, you can send one of two messages
to any object in the chain:

- presentError: — for error messages displayed in application-modal alert dialogs

- presentError:modalForWindow:delegate:didPresentSelector:contextInfo: — for error
messages displayed in document-modal alert sheets

Although these methods are declared by the NSResponder class, you may also send them to objects of the
NSDocument and NSDocumentController classes. (The NSResponder class is the superclass, of course, of
the NSView, NSWindow, NSApplication, and NSWindowController classes.)

The default behavior of both the presentError: ... methods—except for the NSApplication
implementation—istosendwillPresentError: to self before forwarding the presentError: .. message
to the next object in the chain. Subclasses can implement the willPresentError: method to inspect the
passed-inNSError object and return a customized object. Subclasses might want to do this if they know more
than their superclass about the conditions giving rise to the error or if they know best how to recover from it.

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

24

Error Responders and Error Recovery
The Error-Responder Chain

For the purposes of illustration, assume that a view object well down the view hierarchy receives the
presentError: message. As Figure 3-1 shows, it sends willPresentError: to self and then sends
presentError: to its superview, passing it any modified NSError object. The superviews of the originating
view do the same thing until finally the window’s content view sends the presentError: message to its

window object.

Figure 3-1 The error-responder chain—part one

‘ Error responder chain DDD»
presentError:
Window DDDDDD[:>

willPresentError: willPresentError: willPresentError:

Subclass Subclass m

The presentError: message proceeds up the chain of error responders in this fashion until it reaches the
global application object, NSApp. As Figure 3-2 depicts, NSApp sends the application:willPresentError:
message to its delegate, giving it the same opportunity as the subclass objects in the chain to inspect the error
object and possibly modify it—but without the need for a custom subclass. When the delegate returns, NSApp
displays the error as (in this case) an alert dialog.

presentError: presentError:

presentError:

View Superview

«DDD Inheritance ‘

Figure 3-2 The error-responder chain — part two

DDD» Error responder chain _

File could not be written because the disk
is full.

ﬂ A Delete some files and try again?

(" cancel) Q—Try-ﬁgnm—-)

presentError: presentError:

oooooog Object

willPresentError: application:willPresentError:

l

Subclass Delegate

instance

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

25

Error Responders and Error Recovery
The Error-Responder Chain

Important Overriding the

presentError:modalForWindow:delegate:didPresentSelector:contextInfo: method or
presentError: method is not recommended.

The exact sequence of objects in the error-responder chain varies according to the type of application. For
document-based applications, the error-responder chain includes document objects, window controllers, and
document controllers as well as views, windows, and NSApp (Figure 3-3).

Figure 3-3 Error-responder chain for document-based applications

Superviews Window
Text Area m

@5
m
s

File Edit Window

Window D Document NSA
™| controller ocument controller PP

Some Cocoa applications are not document-based but still use one or more window controllers. Figure 3-4
shows the sequence of objects in this error-responder chain.

Figure 3-4 Error-responder chain for non-document applications with window controllers

Superviews Window
Text Area m

o5
2

File Edit Window

Window NSA
- » < ’ controller PP

A

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

26

Error Responders and Error Recovery
Error Customization

Finally, simple Cocoa applications—those that are not document-based and that don’t use window
controllers—have an error-responder sequence as depicted in Figure 3-5.

Figure 3-5 Error-responder chain for simple (non-document) applications

View Superviews Window
0 Text Area 0 File Edit Window

— — NSApp

v
|

Error Customization

As described in the preceding section, all along the error-responder chain custom subclasses of objects in the
chain are given the opportunity to inspect and customize an NSError object if they implement the
willPresentError: method. Near the end of the chain the application delegate has the same opportunity
inapplication:willPresentError:. What kind of tests and customizations can take place in these
methods?

In either method, you probably first want to determine what the error is. When doing this, test the NSError
object’s domain and error code against the constants that are probably related to the error condition. Do not
evaluate the description or recovery strings as these can vary, especially when they are localized. You might
also narrow down the cause of the error by using domain-specific keys to extract various pieces of information
from the user info dictionary.

Important You should always special-case test for the NSUserCancelledError error code (in the
NSCocoaErrorDomain). This code indicates that the user cancelled the operation (for example, by pressing
Command-period). In this case, you should not display any error dialog.

You might also want to find out if the error object has an underlying error; you can access this object from the
user info dictionary with the NSUnderlyingErrorKey key. If there is an underlying error, and this object
has a failure reason in its user info dictionary, you can append this localized string to the error description to
create a more informative description.

If you decide that you know how to recover from the error, you can add an object to the user info dictionary
as the recovery attempter. For a recovery attempter to be effective, it must satisfy the requirements summarized
in “Error Recovery” (page 28).

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

27

Error Responders and Error Recovery
Error Recovery

If you are customizing a received NSError object to have a custom error domain and error code, you may
choose to store the original error in the user info dictionary as an underlying error. Use the key
NSUnderlyingErrorKey for this purpose (or override the recoveryAttempter method).

You cannot modify a received NSError object because the class provides no setter methods and the user info
dictionary is immutable. When customizing an error, you must create a new NSError object, initializing with
new data plus data from the old error object that you want to carry over. See “Using and Creating Error
Objects” (page 15) for explicit instructions and examples.

Error Recovery

A recovery attempter is an object designated to attempt, upon user request, a recovery from a specific error.
For example, say that a program cannot save a file because it is locked. The recovery attempter could try to
unlock it first before overwriting it.

The error recovery mechanism is similar to the delegation design pattern in that a designated object —the
recovery attempter—is asked to respond to a user action. An NSError object can encapsulate a recovery
attempter and recovery options, which is an array of button titles to display in the error alert. Among the
button titles is one requesting error recovery. When an error alert is displayed and the user clicks a button, the
application sends a message to the recovery attempter, passing it the index of the button that was clicked. If
the “recover” button was clicked, the recovery attempter tries to complete the operation in a way that avoids
the error or fixes the condition that gives rise to it. Finally, the recovery attempter informs either the application
object or the document-modal sheet delegate whether it was successful.

There are three requirements for error recovery to occur as a result of a user choice:

« The recovery-attempter object must implement one of the NSErrorRecoveryAttempting informal
protocol methods:
attemptRecoveryFromError:optionIndex:delegate:didRecoverSelector:contextInfo:
or attemptRecoveryFromError:optionIndex:, depending on whether the error alert is
document-modall (sheet) or application-modal (dialog), respectively.

= The recoveryAttempter method must return a suitable object. To ensure this, you can add the recovery
attempter to the user info dictionary as the value of NSRecoveryAttempterErrorKey , or you can
override the recoveryAttempter method.

» Thethe localizedRecoveryOptions must return an array of button titles (including the title of the
button that requests error recovery). To ensure this, you can add the array to the user info dictionary as
the value of NSLocalizedRecoveryOptionsErrorKey , or you can override the
localizedRecoveryOptions method.

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

28

Error Responders and Error Recovery
Error Recovery

For the complete procedure for error recovery, including sample code, see “Recovering From Errors” (page
34).

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

29

Handling Received Errors

Note The error-presentation and error-responder architecture described in this chapter is available
only on the Mac OS X platform.

When you send a presentError: or
presentError:modalForWindow:delegate:didPresentSelector:contextInfo: message to certain
eligible objects, the message travels up a sequence of objects in an application called the error-responder
chain (see “The Error-Responder Chain” (page 24)). The default implementation for most objects in this chain
is to send the willPresentError: method to self before sending the presentError: message to the
next object. The willPresentError: message gives instances of custom subclasses an opportunity to look
at the error object being passed up the chain and possibly customize it. When the error object reaches the
end of the chain, the global application object, NSApp, displays an error alert to users; but before NSApp
displays the error alert, it invokes the method application:willPresentError:, giving its delegate the
same opportunity.

The following sections discuss strategies for implementing the willPresentError: and
application:willPresentError: methods.

Passing Errors Up the Error-Responder Chain

If you have a subclass of NSDocument,NSDocumentController,NSWindowController,NSWindow,NSPanel,
or any view class, you can override thewillPresentError: method to customize the presentation of errors.
This might be something you want an instance of your subclass to do if it knows more about the context of a
particular error than other objects in the application. Generally, an implementation of willPresentError:
examines the passed-in NSError object and if, for example, its localized description is insufficient, or if the
subclass knows how to recover from the error, it creates a new NSError object and returns it. In most cases,
the customized error object retains some information from the passed-in object.

An implementation of the willPresentError: method should always use the error domain and error code
as the basis for deciding whether to return a customized error object. Do not base the decision on the strings
in the user info dictionary for these can be localized and may vary between invocations. If your implementation
decides not to customize the error, don't return the passed-in object directly; instead, send the
willPresentError: message to super. Listing 4-1 illustrates some of these strategies.

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

30

Handling Received Errors
Customizing an Error Object

Listing 4-1 Handling an error passed up the error-responder chain

— (NSError *x)willPresentError: (NSError x)error {

if ([[error domain] isEqualToString:NSCocoaErrorDomain]) {

switch([error code]) {
case NSFileLockingError:
case NSFileReadNoSuchFileError:
{ // private method of custom subclass
return [self customizeError:error];
}
default:

return [super willPresentError:error];

You don’t have to make a subclass in order to customize an NSError object for presentation. Instead, your
application delegate can implement the application:willPresentError: method. The same observations
and guidelines given for willPresentError: above apply to the implementation of
application:willPresentError:, except that you can return the original error object directly if you
decide not to customize it.

Customizing an Error Object

InthewillPresentError: examplein Listing 4-1 (page 31), a private method is invoked to customize the
error object. This is done to clarify the structure of the implementation. But if the customizing code was in-line,
it might look some like the willPresentError: implementation in Listing 4-2. This code checks if the
passed-in object has a failure reason and, if it does, it creates a more application-specific error description,
appending the failure reason. Then it creates a new NSError object with this different description.

Listing 4-2 Customizing an NSError object

— (NSError x)willPresentError: (NSError *x)error {

if ([[error domain] isEqualToString:NSCocoaErrorDomain]) {

switch([error code]) {

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

31

Handling Received Errors
Customizing an Error Object

case NSFileLockingError:
case NSFileReadNoSuchFileError:
{
NSString *locFailure = [error localizedFailureReason];
if (locFailure) {
NSMutableDictionary *newUserInfo = [NSMutableDictionary
dictionaryWithCapacity: [[[error userInfo] allKeys] count]];
[newUserInfo setDictionary: [error userInfo]];
NSString *errorDesc = [NSString stringWithFormat:

NSLocalizedString(@"MyGreatApp cannot open the file. %@",
@IIII) ,
locFailure];

[newUserInfo setObject:errorDesc
forKey:NSLocalizedDescriptionKey];
NSError *newError = [NSError errorWithDomain: [error domain]
code: [error code] userInfo:newUserInfo];
return newError;
} else {

return [super willPresentError:error];

}
default:

return [super willPresentError:error];

In this example, the original error object is essentially cloned to make the new one. The new error object
contains a more specific error description and appends the failure reason to it.

As noted in “Passing Errors Up the Error-Responder Chain” (page 30), there is no difference in implementing
willPresentError: and the delegate method application:willPresentError:, except thatin the
latter method you can return the passed-in error object directly if you do not customize it.

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

32

Handling Received Errors
Customizing an Error Object

Note For another example of error-object customization, see Listing 5-1 (page 35) in “Recovering
From Errors” (page 34). In this case, the original object is changed to include recovery options, a
recovery suggestion, and a recovery-attempter object.

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

33

Recovering From Errors

Note The error-presentation, error-responder, and error-recovery architectures described in this
chapter are available only on the Mac OS X platform.

As described in “The Recovery Attempter” (page 13), an NSError object can have a designated recovery
attempter, an object that attempts to recover from the error if the user requests it. The error object holds a
reference to the recovery attempter in its user info dictionary, so if the error object is passed around within an
application, the recovery attempter stays with it. The user info dictionary must also contain recovery options,
an array of localized strings for button titles, one or more of which requests recovery. When the error is presented
in an alert and the user selects the recovery option, a message is sent to the recovery attempter, requesting
it to do its job.

Ideally, the recovery attempter should be an independent object that knows something about the conditions
of an error and how best to circumvent those conditions. An application could even have an object whose
role is to recover from errors of various kinds. A recovery attempter must implement at least one of the two
methods of the NSErrorRecoveryAttempting informal protocol:
attemptRecoveryFromError:optionIndex:delegate:didRecoverSelector:contextInfo: or
attemptRecoveryFromError:optionIndex:. It implements the former method for error alerts presented
document-modally, and the latter method for application-modal alerts.

You must also prepare an error object so that error recovery can take place. To do this, add three items to the
user info dictionary of the error object:

= The recovery-attempter object under the key NSRecoveryAttempterErrorKey

= The recovery options, an array of localized strings, under the key
NSLocalizedRecoveryOptionsErrorKey

= Arecovery-suggestion string, also localized, under the keyNSLocalizedRecoverySuggestionErrorKey.
Although this property is not strictly required, an error alert that offers recovery as an option should display
this string, as stipulated by the human-interface guidelines. And if the string refers to particular button
titles, it should use the same titles in the recovery-options array.

For guidelines about error alerts on Mac OS X, see Apple Human Interface Guidelines (section on dialogs
in ““Windows"").

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

34

Recovering From Errors

Listing 5-1 illustrates a case involving the NSXMLDocument class. In this example, an NSDocument object
attempts to create an internal tree representing an XML document using the
initWithContentsOfURL:options:error: method of NSXMLDocument. If the attempt fails, the usual
cause is that the source XML is malformed—for example, there is a missing end tag for an element, or an
attribute value is not quoted. If the source XML is “tidied” first to fix the structural problems, it may be possible
to create the XML tree.

In the example in Listing 5-1 if the invocation of initWithContentsOfURL:options:error: returns an
error object by reference, the document object customizes the error object, adding (among other things) a
recovery-attempter object, localized recovery options, and a localized recovery suggestion to its user info
dictionary. Then it sends
presentError:modalForWindow:delegate:didPresentSelector:contextInfo: to self.

Listing 5-1 Preparing for error recovery

— (BOOL) readFromURL: (NSURL *x)furl ofType: (NSString *)type error: (NSError *k)anError
{

NSError xerr = nil;

// xmlDoc is an NSXMLDocument instance variable.
if (xmlDoc !'= nil) {
[xmlDoc release];

xmlDoc = nil;

xmlDoc = [[NSXMLDocument alloc] initWithContentsOfURL: furl

options:NSXMLNodeOptionsNone error:&err];

if (xmlDoc == nil && err) {
NSString *newDesc = [[err localizedDescription] stringByAppendingString:

([err localizedFailureReason] ? [err localizedFailureReason] : @"")];

NSMutableDictionary *newDict = [NSMutableDictionary
dictionaryWithCapacity:4];

[newDict setObject:newDesc forKey:NSLocalizedDescriptionKey];
[newDict setObject:

NSLocalizedString(@"Would you like to tidy the XML and try again?",
@IIII)

forKey:NSLocalizedRecoverySuggestionErrorKey];

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

35

Recovering From Errors

[newDict setObject:self forKey:NSRecoveryAttempterErrorKey];
[newDict setObject: [NSArray arrayWithObjects:

NSLocalizedString(@"Try Again", @""), NSLocalizedString(@"Cancel",
@IIII) ,

nil] forKey:NSLocalizedRecoveryOptionsErrorKey];
[newDict setObject:furl forKey:NSURLErrorKey];
NSError *newError = [[NSError alloc] initWithDomain: [err domain]
code: [err code] userInfo:newDict];
[self presentError:newError modalForWindow: [self windowForSheet]
delegate:self
didPresentSelector:@selector(didPresentErrorWithRecovery:contextInfo:)

contextInfo:nil];

/...

Note that the document object also adds to the user info dictionary the URL identifying the source of XML.
The recovery attempter will use this URL when it attempts to create a tree representing the XML.

The error object is passed up the error-responder chain and NSApp displays it. When the user clicks any button
of the error alert, NSApp checks to see if the error object has both a recovery attempter and recovery options.
If both of these conditions are true, it invokes the method implemented by the recovery attempter that
corresponds to the mode of the alert (that is, document-modal or application-modal).

Listing 5-2 shows how the recovery attempter for the XML document implements the
attemptRecoveryFromError:optionIndex:delegate:didRecoverSelector:contextInfo: method.

Listing 5-2 Recovering from the error and informing the modal delegate

— (void)attemptRecoveryFromError: (NSError x)error
optionIndex: (unsigned int)recoveryOptionIndex
delegate: (id)delegate
didRecoverSelector: (SEL)didRecoverSelector

contextInfo: (void *)contextInfo {

BOOL success = NO;
NSError xerr = nil;

NSInvocation xinvoke = [NSInvocation invocationWithMethodSignature:

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

36

Recovering From Errors

[delegate
methodSignatureForSelector:didRecoverSelector]];

[invoke setSelector:didRecoverSelector];

if (recoveryOptionIndex == @) { // Recovery requested.
xmlDoc = [[NSXMLDocument alloc] initWithContentsOfURL: [[error userInfo]
objectForKey:NSURLErrorKey] options:NSXMLDocumentTidyXML error:&err];
if (xmlDoc != nil) {

success = YES;

}
[invoke setArgument:(void *)&success atIndex:2];
if (err)

[invoke setArgument:&err atIndex:3];

[invoke invokeWithTarget:delegate];

The key part of the above example is the test the recovery attempter makes to determine if the user clicked
the “Try Again” button: it checks the value of recoveryOptionIndex. If the user did click this button, the
recovery attempter invokes the initWithContentsOfURL:options:error: method again, this time with
the NSXMLDocumentTidyXML option. Then it creates and invokes an NSInvocation object, thereby sending
the required message to the modal delegate of the error alert. The invocation object includes the two parameters
required by the delegate’s selector: a Boolean indicating whether the recovery attempt succeeded and a “context
info” parameter which, in this case, contains any error object returned from the recovery attempt.

Note The example in Listing 5-2 shows the use of NSInvocation to send a message. However, if

you have a reference to the modal delegate and know the name of the method it implements, you
can send the message directly.

When the modal delegate receives the message from the recovery attempter, as in Listing 5-3, it can respond
appropriately.
Listing 5-3 Modal delegate responding to recovery attempter

— (void)didPresentErrorWithRecovery: (BOOL)didRecover

contextInfo: (void x)contextInfo {

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

37

Recovering From Errors

NSError xtheError = (NSError x)contextInfo;
if (didRecover) {
[tableView reloadData];

} else if (theError && [theError isKindOfClass: [NSError class]]) {
[NSAlert alertWithError:theError];

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

38

Document Revision History

This table describes the changes to Error Handling Programming Guide.

Date

2011-01-07

2009-10-16

2009-08-18

2009-03-04

2009-01-06

2006-10-03

2006-04-04

2005-04-29

Notes

Added advice about not modifying the error parameter if a method does
not directly return NO to indicate an error (Creating and Returning NSError
Objects).

Initialized local variables in code samples.

Mentioned that NSError objects are available on iOS, but noted that the
error-responder/recovery APIs and architecture are specific to the Mac OS
X platform. Also made some minor corrections and added links to
core-competency concepts.

Corrected a link error.

Added link to "Error Handling in the Document Architecture" in
Document-Based Application Overview. Mentioned default behavior of
presentError: with NSCocoaErrorDomain/NSUserCancelledError errors.
Provided related reference, sample code, and documents.

Corrected code in Listing 5-2 showing creation of NSInvocation object.

Corrected code listing illustrating error recovery and discussed
NSUserCancelledError code.

New document that describes how to use NSError objects and related
Application Kit support when handling user-level errors.

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

39

Index

A

alertWithError: method 13,20

application object 19

application-modal alerts 19, 28, 34

application:willPresentError: method 25,30-
32

architectures

for error handling 24

attemptRecoveryFromError:optionIndex: method
28,34

attemptRecoveryFromError:optionIndex:delegate:
didRecoverSelector:contextInfo: method
28,34

B

button titles 12

C

Carbon error codes 7

Cocoa error domain 8, 16

code method 8

creating error objects 21, 23
customizing errors 27,28, 31-32

D

displaying errors 17,20
document-based applications

and error presentation 26
document-modal alerts 19, 28, 34
domain method 8

E

error alerts 16, 28
application-modal 19
document-modal 19
error codes 8, 21,27
error customization 24,27-28
error description 11
error domains 7,21, 27
reasons for 8
error evaluation 15, 30
error objects See NSError objects 15
error presentation 13, 17-20
architecture for 24, 27
error recovery 28-29, 34, 37
error-responder chain 17, 19, 24-27, 36
sequence of objects 26
errors
testing for 27
underlying 27
errorWithDomain: code:userInfo: method 21
evaluating errors 16

F

failure reason 11, 27

H

handling returned errors 15

initWithDomain:code:userInfo: method 21

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

40

Index

L reasons for 7

localizedDescription method 11 versus exceptions 23

NSErrorRecoveryAttempting informal protocol 13,
28,34

NSException objects 23

NSFilePathErrorKey constant 14

NSInvocation class 37

localizedFailureReason method 11
localizedRecoveryOptions method 12,28
localizedRecoverySuggestion method 12
localizing error strings 11, 13

NSLoalizedRecoveryOptionsErrorKey constant 28

M NSLocalizedDescriptionKey constant 11

methods NSLocalizedFailureReasonErrorKey constant 11
returning errors from 21, 23 NSLocalizedRecoverSuggestionErrorKey constant
with NSError parameters 15 12

modal delegate NSLocalizedRecoveryOptionsErrorKey constant
of document-modal alerts 20, 37 12,34

NSLocalizedRecoverySuggestionErrorKey
N constant 34

NSLocalizedString macros 13
NSAlert class 13

NSAlert objects

and error presentation 17
NSApp 19, 25, 30, 36
NSApplication class 24

NSMachErrorDomain constant 7
NSOSStatusErrorDomain constant 8
NSPanel class 30
NSPOSIXErrorDomain constant 7, 21
NSRecoveryAttempterErrorKey constant 13,28,34
NSCocoaErrorDomain constant 8

NSResponder class 24
NSDictionary class 10
NSDocument class 24, 30

NSDocument objects 19

NSStringEncodingErrorKey constant 14
NSUnderlyingErrorKey constant 13,27
NSURLErrorDomain constant 8
NSURLErrorKey constant 14
NSUserCancelledError code 17,27
NSView class 24

NSView objects 19

NSWindow class 24, 30

NSWindow objects 19
NSWindowController class 24, 30
NSWindowController objects 19
NSXMLDocument class 35
NSXMLParserErrorDomain constant 8

NSDocumentController class 24, 30
NSDocumentController objects 19
NSError class 7
NSError objects 15

and error recovery 34,37

and the error-responder chain 30, 32

as method parameters 15

as parameters 21

creating 21-23

customizing 28

description 7-14

displaying 17, 20

evaluating 16 0

examining 16, 30 objectForKey: method 11

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

41

Index

0SStatus data type 7

P

POSIX error codes 7

presentError: method 11, 13,19, 24, 30

presentError:modalForWindow:delegate:
didPresentSelector:contextInfo: method
19, 24, 30

programming errors 23

R

received errors 30, 32

recovering from errors 28, 29, 34,37

recovery attempter 13, 17, 20, 27, 28, 29, 34-37
recovery options 12, 34

recovery suggestion 12,34
recoveryAttempter method 13, 28

runtime errors 23

V)

underlying errors 13, 23,27
in Cocoa errors 16

user info dictionary 10, 21
and error recover 34
domain-specific keys 14

userInfo method 10

'

view classes 30

W

WebKitErrorDomain constant 8
willPresentError: method 24,30-32

2011-01-07 | © 2005, 2011 Apple Inc. All Rights Reserved.

42

¢

Apple Inc.

© 2005, 2011 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer for personal use only and to print
copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.

The Apple logo is a trademark of Apple Inc.

No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-labeled computers.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, Cocoa
Touch, eMac, Mac, Mac OS, Macintosh,
Objective-C, and OS X are trademarks of Apple
Inc,, registered in the United States and other
countries.

10S is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

UNIX is a registered trademark of The Open
Group.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS PROVIDED
“AS1S,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer,
agent, or employee is authorized to make any
modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other
rights which vary from state to state.

	Error Handling Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Error Objects, Domains, and Codes
	Why Have Error Objects?
	Error Domains
	Error Codes
	The User Info Dictionary
	Localized Error Information
	The Recovery Attempter
	Underlying Error
	Domain-Specific Keys

	Using and Creating Error Objects
	Handling Error Objects Returned From Methods
	Error-Handling Alternatives in Mac OS X

	Displaying Information From Error Objects
	Propagating Errors for Display by the Application Object (Mac OS X)

	Creating and Returning NSError Objects
	A Note on Errors and Exceptions

	Error Responders and Error Recovery
	The Error-Responder Chain
	Error Customization
	Error Recovery

	Handling Received Errors
	Passing Errors Up the Error-Responder Chain
	Customizing an Error Object

	Recovering From Errors
	Revision History
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	U
	V
	W

