
Google Objective-C Style Guide
Revision 2.36

Mike Pinkerton
Greg Miller

Dave MacLachlan

Each style point has a summary for which additional information is available by toggling the
accompanying arrow button that looks this way: ▽ . You may toggle all summaries with the big arrow
button:

▽ Toggle all summaries
Table of Contents
Example
Spacing And
Formatting

Spaces vs. Tabs Line Length Method Declarations and Definitions Method
Invocations @public and @private Exceptions Protocols Blocks

Naming File Names Objective-C++ Class Names Category Names Objective-C Method
Names Variable Names

Comments File Comments Declaration Comments Implementation Comments Object
Ownership

Cocoa and
Objective-C
Features

Member Variables Should Be @private Identify Designated Initializer Override
Designated Initializer Overridden NSObject Method Placement Initialization Avoid
+newKeep the Public API Simple #import and #include Use Root
Frameworks Prefer To autorelease At Time of Creation Autorelease Then
Retain Avoid Accessors During init and deallocDealloc Instance Variables in
Declaration Order Setters copy NSStrings Avoid Throwing Exceptions nil
Checks BOOL Pitfalls Properties Interfaces Without Instance
VariablesAutomatically Synthesized Instance Variables

Cocoa
Patterns

Delegate Pattern Model/View/Controller

Important Note

Displaying Hidden Details in this Guide

link ▽
This style guide contains many details that are initially hidden from view. They are marked by
the triangle icon, which you see here on your left. Click it now. You should see "Hooray"
appear below.

Hooray! Now you know you can expand points to get more details. Alternatively, there's an
"expand all" at the top of this document.

Background

Objective-C is a very dynamic, object-oriented extension of C. It's designed to be easy to use
and read, while enabling sophisticated object-oriented design. It is the primary development
language for new applications on Mac OS X and the iPhone.

Cocoa is one of the main application frameworks on Mac OS X. It is a collection of Objective-
C classes that provide for rapid development of full-featured Mac OS X applications.

Apple has already written a very good, and widely accepted, coding guide for Objective-C.
Google has also written a similar guide for C++. This Objective-C guide aims to be a very
natural combination of Apple's and Google's general recommendations. So, before reading
this guide, please make sure you've read:

• Apple's Cocoa Coding Guidelines
• Google's Open Source C++ Style Guide

Note that all things that are banned in Google's C++ guide are also banned in Objective-C++,
unless explicitly noted in this document.

The purpose of this document is to describe the Objective-C (and Objective-C++) coding
guidelines and practices that should be used for all Mac OS X code. Many of these guidelines
have evolved and been proven over time on other projects and teams. Open-source projects
developed by Google conform to the requirements in this guide.

Google has already released open-source code that conforms to these guidelines as part of
the Google Toolbox for Mac project (abbreviated GTM throughout this document). Code
meant to be shared across different projects is a good candidate to be included in this
repository.

Note that this guide is not an Objective-C tutorial. We assume that the reader is familiar with
the language. If you are new to Objective-C or need a refresher, please read The Objective-C
Programming Language .

Example

They say an example is worth a thousand words so let's start off with an example that should
give you a feel for the style, spacing, naming, etc.

An example header file, demonstrating the correct commenting and spacing for
an @interface declaration

// Foo.h // AwesomeProject // // Created by Greg Miller on
6/13/08. // Copyright 2008 Google, Inc. All rights reserved. //
#import <Foundation/Foundation.h> // A sample class demonstrating
good Objective-C style. All interfaces, // categories, and protocols
(read: all top-level declarations in a header) // MUST be commented.
Comments must also be adjacent to the object they're // documenting.
// // (no blank line between this comment and the interface)
@interface Foo : NSObject { @private NSString *bar_; NSString
*bam_; } // Returns an autoreleased instance of Foo. See -
initWithBar: for details // about |bar|. + (id)fooWithBar:(NSString
*)bar; // Designated initializer. |bar| is a thing that represents a
thing that // does a thing. - (id)initWithBar:(NSString *)bar; //
Gets and sets |bar_|. - (NSString *)bar; - (void)setBar:(NSString
*)bar; // Does some work with |blah| and returns YES if the work was

completed // successfully, and NO otherwise. -
(BOOL)doWorkWithBlah:(NSString *)blah; @end

An example source file, demonstrating the correct commenting and spacing for
the @implementation of an interface. It also includes the reference implementations for
important methods like getters and setters, init, and dealloc.

// // Foo.m // AwesomeProject // // Created by Greg Miller on
6/13/08. // Copyright 2008 Google, Inc. All rights reserved. //
#import "Foo.h" @implementation Foo + (id)fooWithBar:(NSString
*)bar { return [[[self alloc] initWithBar:bar] autorelease]; } //
Must always override super's designated initializer. - (id)init
{ return [self initWithBar:nil]; } - (id)initWithBar:(NSString
*)bar { if ((self = [super init])) { bar_ = [bar copy];
bam_ = [[NSString alloc] initWithFormat:@"hi %d", 3]; } return
self; } - (void)dealloc { [bar_ release]; [bam_ release];
[super dealloc]; } - (NSString *)bar { return bar_; } -
(void)setBar:(NSString *)bar { [bar_ autorelease]; bar_ = [bar
copy]; } - (BOOL)doWorkWithBlah:(NSString *)blah { // ... return
NO; } @end

Blank lines before and after @interface, @implementation, and @end are optional. If
your @interface declares instance variables, a blank line should come after the closing
brace (}).

Unless an interface or implementation is very short, such as when declaring a handful of
private methods or a bridge class, adding blank lines usually helps readability.

Spacing And Formatting

Spaces vs. Tabs

link ▽
Use only spaces, and indent 2 spaces at a time.

We use spaces for indentation. Do not use tabs in your code. You should set your editor to
emit spaces when you hit the tab key.

Line Length

link ▽
Each line of text in your code should try to be at most 80 characters long.

Strive to keep your code within 80 columns. We realize that Objective C is a verbose
language and in some cases it may be more readable to extend slightly beyond 80 columns,
but this should definitely be the exception and not commonplace.

If a reviewer asks that you reformat a line because they feel it can be fit in 80 columns and
still be readable, you should do so.

We recognize that this rule is controversial, but so much existing code already adheres to it,
and we feel that consistency is important.

You can make violations easier to spot in Xcode by going to Xcode > Preferences > Text
Editing > Show page guide.

Method Declarations and Definitions

link ▽
One space should be used between the - or + and the return type, and no spacing in the
parameter list except between parameters.

Methods should look like this:

- (void)doSomethingWithString:(NSString *)theString { ... }

The spacing before the asterisk is optional. When adding new code, be consistent with the
surrounding file's style.

If you have too many parameters to fit on one line, giving each its own line is preferred. If
multiple lines are used, align each using the colon before the parameter.

- (void)doSomethingWith:(GTMFoo *)theFoo
rect:(NSRect)theRect interval:(float)theInterval
{ ... }

When the first keyword is shorter than the others, indent the later lines by at least four spaces.
You can do this by making keywords line up vertically, not aligning colons:

- (void)short:(GTMFoo *)theFoo longKeyword:(NSRect)theRect
evenLongerKeyword:(float)theInterval { ... }

Method Invocations

link ▽
Method invocations should be formatted much like method declarations. When there's a
choice of formatting styles, follow the convention already used in a given source file.

Invocations should have all arguments on one line:

[myObject doFooWith:arg1 name:arg2 error:arg3];

or have one argument per line, with colons aligned:

[myObject doFooWith:arg1 name:arg2
error:arg3];

Don't use any of these styles:

[myObject doFooWith:arg1 name:arg2 // some lines with >1 arg
error:arg3]; [myObject doFooWith:arg1 name:arg2
error:arg3]; [myObject doFooWith:arg1 name:arg2 //
aligning keywords instead of colons error:arg3];

As with declarations and definitions, when the keyword lengths make it impossible to align
colons and still have four leading spaces, indent later lines by four spaces and align keywords
after the first one, instead of aligning the colons.

[myObj short:arg1 longKeyword:arg2 evenLongerKeyword:arg3];

@public and @private

link ▽
The @public and @private access modifiers should be indented by 1 space.

This is similar to public, private, and protected in C++.

@interface MyClass : NSObject { @public ... @private ... } @end

Exceptions

link ▽
Format exceptions with each @ label on its own line and a space between the @ label and the
opening brace ({), as well as between the @catch and the caught object declaration.

If you must use Obj-C exceptions, format them as follows. However, see Avoid Throwing
Exceptions for reasons why you should not be using exceptions.

@try { foo(); } @catch (NSException *ex) { bar(ex); } @finally
{ baz(); }

Protocols

link ▽
There should not be a space between the type identifier and the name of the protocol
encased in angle brackets.

This applies to class declarations, instance variables, and method declarations. For example:

@interface MyProtocoledClass : NSObject<NSWindowDelegate> { @private
id<MyFancyDelegate> delegate_; } -
(void)setDelegate:(id<MyFancyDelegate>)aDelegate; @end

Blocks

link ▽
Blocks are preferred to the target-selector pattern when creating callbacks, as it makes code
easier to read. Code inside blocks should be indented four spaces.

There are several appropriate style rules, depending on how long the block is:

• If the block can fit on one line, no wrapping is necessary.

• If it has to wrap, the closing brace should line up with the first
character of the line on which the block is declared.

• Code within the block should be indented four spaces.
• If the block is large, e.g. more than 20 lines, it is recommended to

move it out-of-line into a local variable.
• If the block takes no parameters, there are no spaces between the

characters ^{. If the block takes parameters, there is no space
between the ^(characters, but there is one space between the)
{ characters.

• Two space indents inside blocks are also allowed, but should only
be used when it's consistent with the rest of the project's code.

// The entire block fits on one line. [operation
setCompletionBlock:^{ [self onOperationDone]; }]; // The block can
be put on a new line, indented four spaces, with the // closing brace
aligned with the first character of the line on which // block was
declared. [operation setCompletionBlock:^{ [self.delegate
newDataAvailable]; }]; // Using a block with a C API follows the
same alignment and spacing // rules as with Objective-C.
dispatch_async(fileIOQueue_, ^{ NSString* path = [self
sessionFilePath]; if (path) { // ... } }); // An
example where the parameter wraps and the block declaration fits //
on the same line. Note the spacing of |^(SessionWindow *window) {| //
compared to |^{| above. [[SessionService sharedService]
loadWindowWithCompletionBlock:^(SessionWindow *window) { if
(window) { [self windowDidLoad:window]; } else
{ [self errorLoadingWindow]; } }]; // An
example where the parameter wraps and the block declaration does //
not fit on the same line as the name. [[SessionService sharedService]
loadWindowWithCompletionBlock: ^(SessionWindow *window)
{ if (window) { [self
windowDidLoad:window]; } else { [self
errorLoadingWindow]; } }]; // Large blocks can
be declared out-of-line. void (^largeBlock)(void) = ^{ // ... };
[operationQueue_ addOperationWithBlock:largeBlock];

Naming

Naming rules are very important in maintainable code. Objective-C method names tend to be
very long, but this has the benefit that a block of code can almost read like prose, thus
rendering many comments unnecessary.

When writing pure Objective-C code, we mostly follow standard Objective-C naming rules.
These naming guidelines may differ significantly from those outlined in the C++ style guide.
For example, Google's C++ style guide recommends the use of underscores between words
in variable names, whereas this guide recommends the use of intercaps, which is standard in
the Objective-C community.

Any class, category, method, or variable name may use all capitals for initialisms within the
name. This follows Apple's standard of using all capitals within a name for initialisms such as
URL, TIFF, and EXIF.

When writing Objective-C++, however, things are not so cut and dry. Many projects need to
implement cross-platform C++ APIs with some Objective-C or Cocoa, or bridge between a
C++ back-end and a native Cocoa front-end. This leads to situations where the two guides
are directly at odds.

Our solution is that the style follows that of the method/function being implemented. If you're
in an @implementation block, use the Objective-C naming rules. If you're implementing a
method for a C++ class, use the C++ naming rules. This avoids the situation where instance
variable and local variable naming rules are mixed within a single function, which would be a
serious detriment to readability.

File Names

link ▽
File names should reflect the name of the class implementation that they contain -- including
case. Follow the convention that your project uses.

File extensions should be as follows:

.h C/C++/Objective-C header file

.m Objective-C implementation file

.mm Objective-C++ implementation file

.cc Pure C++ implementation file

.c C implementation file

File names for categories should include the name of the class being extended,
e.g. GTMNSString+Utils.h or GTMNSTextView+Autocomplete.h

Objective-C++

link ▽
Within a source file, Objective-C++ follows the style of the function/method you're
implementing.

In order to minimize clashes between the differing naming styles when mixing
Cocoa/Objective-C and C++, follow the style of the method being implemented. If you're in
an @implementation block, use the Objective-C naming rules. If you're implementing a
method for a C++ class, use the C++ naming rules.

// file: cross_platform_header.h class CrossPlatformAPI
{ public: ... int DoSomethingPlatformSpecific(); // impl on
each platform private: int an_instance_var_; }; // file:
mac_implementation.mm #include "cross_platform_header.h" // A
typical Objective-C class, using Objective-C naming. @interface
MyDelegate : NSObject { @private int instanceVar_;
CrossPlatformAPI* backEndObject_; } -
(void)respondToSomething:(id)something; @end @implementation
MyDelegate - (void)respondToSomething:(id)something { // bridge
from Cocoa through our C++ backend instanceVar_ = backEndObject-
>DoSomethingPlatformSpecific(); NSString* tempString = [NSString
stringWithInt:instanceVar_]; NSLog(@"%@", tempString); } @end //
The platform-specific implementation of the C++ class, using // C++
naming. int CrossPlatformAPI::DoSomethingPlatformSpecific()
{ NSString* temp_string = [NSString
stringWithInt:an_instance_var_]; NSLog(@"%@", temp_string);
return [temp_string intValue]; }

Class Names

link ▽
Class names (along with category and protocol names) should start as uppercase and use
mixed case to delimit words.

In application-level code, prefixes on class names should generally be avoided. Having every
single class with same prefix impairs readability for no benefit. When designing code to be
shared across multiple applications, prefixes are acceptable and recommended
(e.g. GTMSendMessage).

Category Names

link ▽
Category names should start with a 2 or 3 character prefix identifying the category as part of a
project or open for general use. The category name should incorporate the name of the class
it's extending.

For example, if we want to create a category on NSString for parsing, we would put the
category in a file named GTMNSString+Parsing.h, and the category itself would be
named GTMStringParsingAdditions (yes, we know the file name and the category name
do not match, but this file could have many separate categories related to parsing). Methods
in that category should share the prefix (gtm_myCategoryMethodOnAString:) in order to
prevent collisions in Objective-C which only has a single namespace. If the code isn't meant
to be shared and/or doesn't run in a different address-space, the method naming isn't quite as
important.

There should be a single space between the class name and the opening parenthesis of the
category.

Objective-C Method Names

link ▽
Method names should start as lowercase and then use mixed case. Each named parameter
should also start as lowercase.

The method name should read like a sentence if possible, meaning you should choose
parameter names that flow with the method name.
(e.g. convertPoint:fromRect: orreplaceCharactersInRange:withString:).
See Apple's Guide to Naming Methods for more details.

Accessor methods should be named the same as the variable they're "getting", but they
should not be prefixed with the word "get". For example:

- (id)getDelegate; // AVOID

- (id)delegate; // GOOD

This is for Objective-C methods only. C++ method names and functions continue to follow the
rules set in the C++ style guide.

Variable Names

link ▽
Variables names start with a lowercase and use mixed case to delimit words. Class member
variables have trailing underscores. For example: myLocalVariable, myInstanceVariable_.
Members used for KVO/KVC bindings may begin with a leading underscore iff use of
Objective-C 2.0's @property isn't allowed.

Common Variable Names

Do not use Hungarian notation for syntactic attributes, such as the static type of a variable (int
or pointer). Give as descriptive a name as possible, within reason. Don't worry about saving
horizontal space as it is far more important to make your code immediately understandable by
a new reader. For example:

int w; int nerr; int nCompConns; tix = [[NSMutableArray alloc] init];
obj = [someObject object]; p = [network port];

int numErrors; int numCompletedConnections; tickets =
[[NSMutableArray alloc] init]; userInfo = [someObject object]; port =
[network port];

Instance Variables

Instance variables are mixed case and should be suffixed with a trailing underscore,
e.g. usernameTextField_. However, we permit an exception when binding to a member
variable using KVO/KVC and Objective-C 2.0 cannot be used (due to OS release constraints).
In this case, it is acceptable to prefix the variable with an underscore, per Apple's accepted
practices for key/value naming. If Objective-C 2.0 can be
used, @property and@synthesize provide a solution that conforms to the naming
guidelines.

Constants

Constant names (#defines, enums, const local variables, etc.) should start with a
lowercase k and then use mixed case to delimit words, i.e. kInvalidHandle, kWritePerm.

Comments

Though a pain to write, they are absolutely vital to keeping our code readable. The following
rules describe what you should comment and where. But remember: while comments are
very important, the best code is self-documenting. Giving sensible names to types and
variables is much better than using obscure names and then trying to explain them through
comments.

When writing your comments, write for your audience: the next contributor who will need to
understand your code. Be generous — the next one may be you!

Remember that all of the rules and conventions listed in the C++ Style Guide are in effect
here, with a few additional points, below.

File Comments

link ▽

Start each file with a basic description of the contents of the file, followed by an author, and
then followed by a copyright notice and/or license boilerplate.

Legal Notice and Author Line

Every file should contain the following items, in order:

• a basic description of the contents of the file
• an author line
• a copyright statement (for example, Copyright 2008 Google

Inc.)
• license boilerplate if neccessary. Choose the appropriate boilerplate

for the license used by the project (e.g. Apache 2.0, BSD, LGPL,
GPL)

If you make significant changes to a file that someone else originally wrote, add yourself to
the author line. This can be very helpful when another contributor has questions about the file
and needs to know whom to contact about it.

Declaration Comments

link ▽
Every interface, category, and protocol declaration should have an accompanying comment
describing its purpose and how it fits into the larger picture.
// A delegate for NSApplication to handle notifications about app //
launch and shutdown. Owned by the main app controller. @interface
MyAppDelegate : NSObject { ... } @end

If you have already described an interface in detail in the comments at the top of your file feel
free to simply state "See comment at top of file for a complete description", but be sure to
have some sort of comment.

Additionally, each method in the public interface should have a comment explaining its
function, arguments, return value, and any side effects.

Document the synchronization assumptions the class makes, if any. If an instance of the
class can be accessed by multiple threads, take extra care to document the rules and
invariants surrounding multithreaded use.

Implementation Comments

link ▽
Use vertical bars to quote variable names and symbols in comments rather than quotes or
naming the symbol inline.

This helps eliminate ambiguity, especially when the symbol is a common word that might
make the sentence read like it was poorly constructed. E.g. for a symbol "count":

// Sometimes we need |count| to be less than zero.

or when quoting something which already contains quotes

// Remember to call |StringWithoutSpaces("foo bar baz")|

Object Ownership

link ▽
Make the pointer ownership model as explicit as possible when it falls outside the most
common Objective-C usage idioms.

Instance variables which are pointers to objects derived from NSObject are presumed to be
retained, and should be either commented as weak or declared with the __weak lifetime
qualifier when applicable. Similarly, declared properties must specify a weak or assign
property attribute if they are not retained by the class. An exception is instance variables
labeled as IBOutlets in Mac software, which are presumed to not be retained.

Where instance variables are pointers to CoreFoundation, C++, and other non-Objective-C
objects, they should always be declared with the __strong and __weak type modifiers to
indicate which pointers are and are not retained. CoreFoundation and other non-Objective-C
object pointers require explicit memory management, even when building for automatic
reference counting or garbage collection. When the __weak type modifier is not allowed (e.g.
C++ member variables when compiled under clang), a comment should be used instead.

Be mindful that support for automatic C++ objects encapsulated in Objective-C objects is
disabled by default, as described here.

Examples of strong and weak declarations:

@interface MyDelegate : NSObject { @private IBOutlet NSButton
*okButton_; // normal NSControl; implicitly weak on Mac only
AnObjcObject* doohickey_; // my doohickey __weak MyObjcParent
*parent_; // so we can send msgs back (owns me) // non-NSObject
pointers... __strong CWackyCPPClass *wacky_; // some cross-
platform object __strong CFDictionaryRef *dict_; }
@property(strong, nonatomic) NSString *doohickey; @property(weak,
nonatomic) NSString *parent; @end

Cocoa and Objective-C Features

Member Variables Should Be @private

link ▽
Member variables should be declared @private.
@interface MyClass : NSObject { @private id myInstanceVariable_; }
// public accessors, setter takes ownership - (id)myInstanceVariable;
- (void)setMyInstanceVariable:(id)theVar; @end

Identify Designated Initializer

link ▽
Comment and clearly identify your designated initializer.

It is important for those who might be subclassing your class that the designated initializer be
clearly identified. That way, they only need to subclass a single initializer (of potentially
several) to guarantee their subclass' initializer is called. It also helps those debugging your
class in the future understand the flow of initialization code if they need to step through it.

Override Designated Initializer

link ▽
When writing a subclass that requires an init... method, make sure you override the
superclass' designated initializer.

If you fail to override the superclass' designated initializer, your initializer may not be called in
all cases, leading to subtle and very difficult to find bugs.

Overridden NSObject Method Placement

link ▽
It is strongly recommended and typical practice to place overridden methods of NSObject at
the top of an @implementation.
This commonly applies (but is not limited) to the init..., copyWithZone:,
and dealloc methods. init... methods should be grouped together, followed by
the copyWithZone: method, and finally the deallocmethod.

Initialization

link ▽
Don't initialize variables to 0 or nil in the init method; it's redundant.

All memory for a newly allocated object is initialized to 0 (except for isa), so don't clutter up
the init method by re-initializing variables to 0 or nil.

Avoid +new

link ▽
Do not invoke the NSObject class method new, nor override it in a subclass. Instead,
use alloc and init methods to instantiate retained objects.

Modern Objective-C code explicitly calls alloc and an init method to create and retain an
object. As the new class method is rarely used, it makes reviewing code for correct memory
management more difficult.

Keep the Public API Simple

link ▽
Keep your class simple; avoid "kitchen-sink" APIs. If a method doesn't need to be public, don't
make it so. Use a private category to prevent cluttering the public header.

Unlike C++, Objective-C doesn't have a way to differentiate between public and private
methods — everything is public. As a result, avoid placing methods in the public API unless

they are actually expected to be used by a consumer of the class. This helps reduce the
likelihood they'll be called when you're not expecting it. This includes methods that are being
overridden from the parent class. For internal implementation methods, use a category
defined in the implementation file as opposed to adding them to the public header.

// GTMFoo.m #import "GTMFoo.h" @interface GTMFoo
(PrivateDelegateHandling) - (NSString *)doSomethingWithDelegate; //
Declare private method @end @implementation
GTMFoo(PrivateDelegateHandling) ... - (NSString
*)doSomethingWithDelegate { // Implement this method } ... @end

Before Objective-C 2.0, if you declare a method in the private @interface, but forget to
implement it in the main @implementation, the compiler will not object. (This is because
you don't implement these private methods in a separate category.) The solution is to put the
functions within an @implementation that specifies the category.

If you are using Objective-C 2.0, you should instead declare your private category using
a class extension, for example:

@interface GMFoo () { ... }

which will guarantee that the declared methods are implemented in
the @implementation section by issuing a compiler warning if they are not.

Again, "private" methods are not really private. You could accidentally override a superclass's
"private" method, thus making a very difficult bug to squash. In general, private methods
should have a fairly unique name that will prevent subclasses from unintentionally overriding
them.

Finally, Objective-C categories are a great way to segment a
large @implementation section into more understandable chunks and to add new,
application-specific functionality to the most appropriate class. For example, instead of adding
"middle truncation" code to a random object in your app, make a new category on NSString).

#import and #include

link ▽
#import Objective-C/Objective-C++ headers, and #include C/C++ headers.

Choose between #import and #include based on the language of the header that you are
including.

• When including a header that uses Objective-C or Objective-C++,
use #import.

• When including a standard C or C++ header, use #include. The
header should provide its own #define guard.

Some Objective-C headers lack #define guards, and expect to be included only
by #import. As Objective-C headers may only be included in Objective-C source files and
other Objective-C headers, using #importacross the board is appropriate.

Standard C and C++ headers without any Objective-C in them can expect to be included by
ordinary C and C++ files. Since there is no #import in standard C or C++, such files will be

included by #include in those cases. Using #include for them in Objective-C source files
as well means that these headers will always be included with the same semantics.

This rule helps avoid inadvertent errors in cross-platform projects. A Mac developer
introducing a new C or C++ header might forget to add #define guards, which would not
cause problems on the Mac if the new header were included with #import, but would break
builds on other platforms where #include is used. Being consistent by using #include on
all platforms means that compilation is more likely to succeed everywhere or fail everywhere,
and avoids the frustration of files working only on some platforms.

#import <Cocoa/Cocoa.h> #include <CoreFoundation/CoreFoundation.h>
#import "GTMFoo.h" #include "base/basictypes.h"

Use Root Frameworks

link ▽
Include root frameworks over individual files.

While it may seem tempting to include individual system headers from a framework such as
Cocoa or Foundation, in fact it's less work on the compiler if you include the top-level root
framework. The root framework is generally pre-compiled and can be loaded much more
quickly. In addition, remember to use #import rather than #include for Objective-C
frameworks.

#import <Foundation/Foundation.h> // good

#import <Foundation/NSArray.h> // avoid #import
<Foundation/NSString.h> ...

Prefer To autorelease At Time of Creation

link ▽
When creating new temporary objects, autorelease them on the same line as you create
them rather than a separate release later in the same method.

While ever so slightly slower, this prevents someone from accidentally removing
the release or inserting a return before it and introducing a memory leak. E.g.:

// AVOID (unless you have a compelling performance reason)
MyController* controller = [[MyController alloc] init]; // ... code
here that might return ... [controller release];

// BETTER MyController* controller = [[[MyController alloc] init]
autorelease];

Autorelease Then Retain

link ▽
Assignment of objects follows the autorelease then retain pattern.

When assigning a new object to a variable, one must first release the old object to avoid a
memory leak. There are several "correct" ways to handle this. We've chosen the "autorelease
then retain" approach because it's less prone to error. Be aware in tight loops it can fill up the
autorelease pool, and may be slightly less efficient, but we feel the tradeoffs are acceptable.

- (void)setFoo:(GMFoo *)aFoo { [foo_ autorelease]; // Won't
dealloc if |foo_| == |aFoo| foo_ = [aFoo retain]; }

Avoid Accessors During init and dealloc

link ▽
Instance subclasses may be in an inconsistent state during init and dealloc method
execution, so code in those methods should avoid invoking accessors.

Subclasses have not yet been initialized or have already deallocated
when init and dealloc methods execute, making accessor methods potentially unreliable.
Whenever practical, directly assign to and release ivars in those methods rather than rely on
accessors.

- (id)init { self = [super init]; if (self) { bar_ =
[[NSMutableString alloc] init]; // good } return self; } -
(void)dealloc { [bar_ release]; // good
[super dealloc]; }

- (id)init { self = [super init]; if (self) { self.bar =
[NSMutableString string]; // avoid } return self; } -
(void)dealloc { self.bar = nil; // avoid
[super dealloc]; }

Dealloc Instance Variables in Declaration Order

link ▽
dealloc should process instance variables in the same order the @interface declares
them, so it is easier for a reviewer to verify.

A code reviewer checking a new or revised dealloc implementation needs to make sure that
every retained instance variable gets released.

To simplify reviewing dealloc, order the code so that the retained instance variables get
released in the same order that they are declared in the @interface. If dealloc invokes
other methods that release instance variables, add comments describing what instance
variables those methods handle.

Setters copy NSStrings

link ▽
Setters taking an NSString, should always copy the string it accepts.

Never just retain the string. This avoids the caller changing it under you without your
knowledge. Don't assume that because you're accepting an NSString that it's not actually
an NSMutableString.

- (void)setFoo:(NSString *)aFoo { [foo_ autorelease]; foo_ =
[aFoo copy]; }

Avoid Throwing Exceptions

link ▽
Don't @throw Objective-C exceptions, but you should be prepared to catch them from third-
party or OS calls.

We do compile with -fobjc-exceptions (mainly so we get @synchronized), but we
don't @throw. Use of @try, @catch, and @finally are allowed when required to properly
use 3rd party code or libraries. If you do use them please document exactly which methods
you expect to throw.

Do not use
the NS_DURING, NS_HANDLER, NS_ENDHANDLER, NS_VALUERETURN and NS_VOIDRETURN
macros unless you are writing code that needs to run on Mac OS X 10.2 or before.

Also be aware when writing Objective-C++ code that stack based objects are not cleaned up
when you throw an Objective-C exception. Example:

class exceptiontest { public: exceptiontest()
{ NSLog(@"Created"); } ~exceptiontest() { NSLog(@"Destroyed"); } };
void foo() { exceptiontest a; NSException *exception =
[NSException exceptionWithName:@"foo"
reason:@"bar"
userInfo:nil]; @throw exception; } int main(int argc, char
*argv[]) { GMAutoreleasePool pool; @try { foo(); }
@catch(NSException *ex) { NSLog(@"exception raised"); }
return 0; }

will give you:

2006-09-28 12:34:29.244 exceptiontest[23661] Created 2006-09-28
12:34:29.244 exceptiontest[23661] exception raised

Note that the destructor for a never got called. This is a major concern for stack based
smartptrs such as shared_ptr and linked_ptr, as well as any STL objects that you may
want to use. Therefore it pains us to say that if you must use exceptions in your Objective-
C++ code, use C++ exceptions whenever possible. You should never re-throw an Objective-C
exception, nor are stack based C++ objects (such as std::string, std::vectoretc.)
allowed in the body of any @try, @catch, or @finally blocks.

nil Checks

link ▽
Use nil checks for logic flow only.

Use nil checks for logic flow of the application, not for crash prevention. Sending a message
to a nil object is handled by the Objective-C runtime. If the method has no return result,
you're good to go. However if there is one, there may be differences based on runtime
architecture, return size, and OS X version (see Apple's documentation for specifics).

Note that this is very different from checking C/C++ pointers against NULL, which the runtime
does not handle and will cause your application to crash. You still need to make sure you do
not dereference a NULL pointer.

BOOL Pitfalls

link ▽
Be careful when converting general integral values to BOOL. Avoid comparing directly
with YES.

BOOL is defined as an unsigned char in Objective-C which means that it can have values
other than YES (1) and NO (0). Do not cast or convert general integral values directly to BOOL.
Common mistakes include casting or converting an array's size, a pointer value, or the result
of a bitwise logic operation to a BOOL which, depending on the value of the last byte of the
integral result, could still result in a NO value. When converting a general integral value to
a BOOL use ternery operators to return a YES or NO value.

You can safely interchange and convert BOOL, _Bool and bool (see C++ Std 4.7.4, 4.12 and
C99 Std 6.3.1.2). You cannot safely interchange BOOL and Boolean so treat Booleans as a
general integral value as discussed above. Only use BOOL in Objective C method signatures.

Using logical operators (&&, || and !) with BOOL is also valid and will return values that can
be safely converted to BOOL without the need for a ternery operator.

- (BOOL)isBold { return [self fontTraits] & NSFontBoldTrait; } -
(BOOL)isValid { return [self stringValue]; }

- (BOOL)isBold { return ([self fontTraits] & NSFontBoldTrait) ?
YES : NO; } - (BOOL)isValid { return [self stringValue] != nil; } -
(BOOL)isEnabled { return [self isValid] && [self isBold]; }

Also, don't directly compare BOOL variables directly with YES. Not only is it harder to read for
those well-versed in C, the first point above demonstrates that return values may not always
be what you expect.

BOOL great = [foo isGreat]; if (great == YES) // ...be great!

BOOL great = [foo isGreat]; if (great) // ...be great!

Properties

link ▽
Properties in general are allowed with the following caveat: properties are an Objective-C 2.0
feature which will limit your code to running on the iPhone and Mac OS X 10.5 (Leopard) and
higher. Dot notation is allowed only for access to a declared @property.

Naming

A property's associated instance variable's name must conform to the trailing _ requirement.
The property's name should be the same as its associated instance variable without the
trailing _. The optional space between the@property and the opening parenthesis should be
omitted, as seen in the examples.

Use the @synthesize directive to rename the property correctly.

@interface MyClass : NSObject { @private NSString *name_; }
@property(copy, nonatomic) NSString *name; @end @implementation
MyClass @synthesize name = name_; @end

Location

A property's declaration must come immediately after the instance variable block of a class
interface. A property's definition must come immediately after the @implementation block
in a class definition. They are indented at the same level as
the @interface or @implementation statements that they are enclosed in.

@interface MyClass : NSObject { @private NSString *name_; }
@property(copy, nonatomic) NSString *name; @end @implementation
MyClass @synthesize name = name_; - (id)init { ... } @end

Use Copy Attribute For Strings

NSString properties should always be declared with the copy attribute.

This logically follows from the requirement that setters for NSStrings always must
use copy instead of retain.

Atomicity

Be aware of the overhead of properties. By default, all synthesized setters and getters are
atomic. This gives each set and get calls a substantial amount of synchronization overhead.
Declare your properties nonatomicunless you require atomicity.

Dot notation

Dot notation is idiomatic style for Objective-C 2.0. It may be used when doing simple
operations to get and set a @property of an object, but should not be used to invoke other
object behavior.

NSString *oldName = myObject.name; myObject.name = @"Alice";

NSArray *array = [[NSArray arrayWithObject:@"hello"] retain];
NSUInteger numberOfItems = array.count; // not a property
array.release; // not a property

Interfaces Without Instance Variables

link ▽
Omit the empty set of braces on interfaces that do not declare any instance variables.
@interface MyClass : NSObject // Does a lot of stuff -
(void)fooBarBam; @end

@interface MyClass : NSObject { } // Does a lot of stuff -
(void)fooBarBam; @end

Automatically Synthesized Instance Variables

link ▽

For code that will run on iOS only, use of automatically synthesized instance variables is
preferred.

When synthesizing the instance variable, use @synthesize var = var_; as this prevents
accidentally calling var = blah; when self.var = blah; is intended.

// Header file @interface Foo : NSObject // A guy walks into a bar.
@property(nonatomic, copy) NSString *bar; @end // Implementation
file @interface Foo () @property(nonatomic, retain) NSArray *baz;
@end @implementation Foo @synthesize bar = bar_; @synthesize baz =
baz_; @end

Cocoa Patterns

Delegate Pattern

link ▽
Delegate objects should not be retained.

A class that implements the delegate pattern should:

1. Have an instance variable named delegate_ to reference the
delegate.

2. Thus, the accessor methods should be
named delegate and setDelegate:.

3. The delegate_ object should not be retained.

Model/View/Controller

link ▽
Separate the model from the view. Separate the controller from the view and the model.
Use @protocols for callback APIs.

• Separate model from view: don't build assumptions about the
presentation into the model or data source. Keep the interface
between the data source and the presentation abstract. Don't give
the model knowledge of its view. (A good rule of thumb is to ask
yourself if it's possible to have multiple presentations, with different
states, on a single instance of your data source.)

• Separate controller from view and model: don't put all of the
"business logic" into view-related classes; this makes the code very
unusable. Make controller classes to host this code, but ensure that
the controller classes don't make too many assumptions about the
presentation.

• Define callback APIs with @protocol, using @optional if not all
the methods are required. (Exception: when using Objective-C
1.0, @optional isn't available, so use a category to define an
"informal protocol".)

Revision 2.36

Mike Pinkerton
Greg Miller

Dave MacLachlan
	

