A股上市公司传智教育(股票代码 003032)旗下技术交流社区北京昌平校区

 找回密码
 加入黑马

QQ登录

只需一步,快速开始

一、基本概念

动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。
与分治法最大的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解)

二、适用情况

能采用动态规划求解的问题的一般要具有3个性质:
(1)最优化原理:如果问题的最优解所包含的子问题的解也是最优的,就称该问题具有最优子结构,即满足最优化原理。
(2)无后效性:即某阶段状态一旦确定,就不受这个状态以后决策的影响。也就是说,某状态以后的过程不会影响以前的状态,只与当前状态有关。
(3)有重叠子问题:即子问题之间是不独立的,一个子问题在下一阶段决策中可能被多次使用到。(该性质并不是动态规划适用的必要条件,但是如果没有这条性质,动态规划算法同其他算法相比就不具备优势)

三、三要素

(1)问题的阶段
(2)每个阶段的状态
(3)从前一个阶段转化到后一个阶段之间的递推关系。
递推关系必须是从次小的问题开始到较大的问题之间的转化,从这个角度来说,动态规划往往可以用递归程序来实现,不过因为递推可以充分利用前面保存的子问题的解来减少重复计算,所以对于大规模问题来说,有递归不可比拟的优势,这也是动态规划算法的核心之处。

确定了动态规划的这三要素,整个求解过程就可以用一个最优决策表来描述,最优决策表是一个二维表,其中行表示决策的阶段,列表示问题状态,表格需要填写的数据一般对应此问题的在某个阶段某个状态下的最优值(如最短路径,最长公共子序列,最大价值等),填表的过程就是根据递推关系,从1行1列开始,以行或者列优先的顺序,依次填写表格,最后根据整个表格的数据通过简单的取舍或者运算求得问题的最优解。

      f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}
  • 1
  • 2
四、基本框架for(j=1; j<=m; j=j+1) // 第一个阶段   xn[j] = 初始值; for(i=n-1; i>=1; i=i-1)// 其他n-1个阶段   for(j=1; j>=f(i); j=j+1)//f(i)与i有关的表达式     xi[j]=j=max(或min){g(xi-1[j1:j2]), ......, g(xi-1[jk:jk+1])};t = g(x1[j1:j2]); // 由子问题的最优解求解整个问题的最优解的方案print(x1[j1]);for(i=2; i<=n-1; i=i+1){       t = t-xi-1[ji];     for(j=1; j>=f(i); j=j+1)        if(t=xi[ji])             break;}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19


【转载】~        https://blog.csdn.net/seven_north/article/details/81630761


2 个回复

倒序浏览
回复 使用道具 举报
奈斯
回复 使用道具 举报
您需要登录后才可以回帖 登录 | 加入黑马