Spark 有很多种模式,最简单就是单机本地模式,还有单机伪分布式模式,复杂的则运行在集群中,目前能很好的运行在 Yarn和 Mesos 中,当然 Spark 还有自带的 Standalone 模式,对于大多数情况 Standalone 模式就足够了,如果企业已经有 Yarn 或者 Mesos 环境,也是很方便部署的。
standalone(集群模式):典型的Mater/slave模式,不过也能看出Master是有单点故障的;Spark支持ZooKeeper来实现 HA
on yarn(集群模式): 运行在 yarn 资源管理器框架之上,由 yarn 负责资源管理,Spark 负责任务调度和计算
on mesos(集群模式): 运行在 mesos 资源管理器框架之上,由 mesos 负责资源管理,Spark 负责任务调度和计算
on cloud(集群模式):比如 AWS 的 EC2,使用这个模式能很方便的访问 Amazon的 S3;Spark 支持多种分布式存储系统:HDFS 和 S3
4.Hadoop的核心配置是什么?
Hadoop的核心配置通过两个xml文件来完成:
①.hadoop-default.xml;
②.hadoop-site.xml。
这些文件都使用xml格式,因此每个xml中都有一些属性,包括名称和值,但是当下这些文件都已不复存在。
5.请列出你所知道的 hadoop 调度器,并简要说明其工作方法?
①.FIFO schedular:默认,先进先出的原则
②.Capacity schedular:计算能力调度器,选择占用最小,优先级高的先执行,以此类推。
③.Fair schedular:公平调度,所有的job具有相同的资源。
6.hadoop 的 namenode 宕机,怎么解决
先分析宕机后的损失,宕机后直接导致client无法访问,内存中的元数据丢失,但是硬盘中的元数据应该还存在,如果只是节点挂了,重启即可,如果是机器挂了,重启机器后看节点是否能重启,不能重启就要找到原因修复了。但是最终的解决方案应该是在设计集群的初期就考虑到这个问题,做namenode的HA。
7.用mapreduce怎么处理数据倾斜问题?
数据倾斜:map /reduce程序执行时,reduce节点大部分执行完毕,但是有一个或者几个reduce节点运行很慢,导致整个程序的处理时间很长,这是因为某一个key的条数比其他key多很多(有时是百倍或者千倍之多),这条key所在的reduce节点所处理的数据量比其他节点就大很多,从而导致某几个节点迟迟运行不完,此称之为数据倾斜。
用hadoop程序进行数据关联时,常碰到数据倾斜的情况,这里提供一种解决方法。
自己实现partition类,用key和value相加取hash值:
方式1:
源代码:
public int getPartition(K key, V value,
int numReduceTasks) {
return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;
}
修改后
public int getPartition(K key, V value,
int numReduceTasks) {
return (((key).hashCode()+value.hashCode()) & Integer.MAX_VALUE) % numReduceTasks;
}
方式2:
public class HashPartitioner<K, V> extends Partitioner<K, V> {
private int aa= 0;
/** Use {@link Object#hashCode()} to partition. */
public int getPartition(K key, V value,
int numReduceTasks) {
return (key.hashCode()+(aa++) & Integer.MAX_VALUE) % numReduceTasks;
}