数据库管理系统 数据库是为各种不同的信息(数据)提供逻辑上模型化的存储空间。除了无模式以外的每个数据库,都有一个模型为所处理的数据提供结构。数据库管理系统是管理各种形状,大小和类型的数据库的应用程序(或库)。 NoSQL 数据库管理系统 在过去的十年左右中,关系数据库管理系统因为各种各样的理由已被开发人员和系统管理员选择用于各种各样的应用程序中。尽管并不完全灵活,许多关系数据库管理系统的强大的性质允许复杂的数据库体制被创建,查询和使用。这甚至超过许多需求的要求,直到不久以前,不同的需求开始上升才发生逆转。 术语“NoSQL”一词是在十年前被创造的,有趣的是,它是作为另一个关系数据库的名称。然而,该数据库在背后有一个不同的想法:消除标准化的SQL的使用。在接下来的几年,别人拾起并通过借鉴其他各种非关系型数据库继续发展了这一思想成为 NoSQL 数据库 。 从设计上,NoSQL 数据库和管理系统都是非关系型(也称非范式型)的。它们并非基于同一种模型(如关系型数据库的关系模型),而是每种数据库依据其不同的功能目标,选择了不同的模型。 NoSQL 数据库不同的操作模型和功能系统几乎有一大把: 如 Redis,MemcacheDB等。 如 Cassandra,HBase等。 如 MongoDB,Couchbase等。 如 OrientDB,Neo4J等。 为了更好地理解每种数据库管理系统的不同角色和底层技术,我们快速地过一遍这4种操作模型吧。 基于键值 我们将要开始我们的NoSQL模型之旅,它是基于键值的数据库管理系统,因为可以把它视为是实现NoSQL的基础和骨架。 该类型的数据库通过关键字与值的映射来工作,有点类似字典。没有结构也没有关系。连接到数据库服务器(例如Redis)以后,应用程序陈述一个关键字如the_answer_to_life并提供也这对应的值如42,这个值随后可以通过提供的关键字以相同的方式搜索。 键值数据库通常用于快速的存储基本信息,有时是一些处理过的非基本的,例如CPU和内存密集的计算。它们的表现非常好,性能高,且通常易于扩展。 注意:在计算机领域,字典通常指特定类型的数据对象。它们由键值对数组构成。 基于列 基于列的NoSQL数据库管理系统通过提升基于键值的简单本质来工作。 虽然在互联网中它们难于理解,但是这些数据库的工作机制相当的简单,通过创建一个或者多个键值对的集合来与记录相匹配。 不像传统的关系数据库定义了模式,基于列的NoSQL解决方案不需要预定义表结构就可以处理数据。每条记录有一列或者多列,这些列包含了信息,每个记录的每列都可能是不相同的。 基本上,基于列的NoSQL数据库就是个二维数组,每个键(即 行/记录)都连接有一个或多个 键/值对,这些管理系统允许非常巨大和非结构化的数据被保存和使用(例如有非常多信息的记录)。 这些数据库通常用在当必须存储大量信息记录,简单的 键/值对 不足以应对时。基于列实现的数据库管理系统,模式自由的模型,扩容性非常好。 基于文档 基于文档的 NoSQL 数据库系统,就像一波瞬间席卷了许多人的最新潮流。这类数据库系统工作原理与基于列的数据库类似;然而,它们支持更深层的嵌套,能得到复杂的结构(例如,文档包含在一个文档里,而这个文档又包含在另一个文档里)。 文档克服了基于列的数据库中键/值嵌套只能有一级或两级的限制。基本上,无论多么复杂、无论什么形态的结构都能形成一个文档,而文档就可以用这类数据库系统来储存。 尽管它们有这样强大的特性,并且支持以独立的键来查询记录,基于文档的数据库系统相比其他系统仍然有自己的问题和不足之处。例如,检索记录中的一个值就需要牵扯出整个记录,update 也是如此,而这都会严重地影响性能。 基于图形 最后来看看 NoSQL 数据库系统中的奇葩——基于图形的系统。 基于图形的数据库系统模型表示数据的方式与上文提到的三种模型截然不同。他们使用树形的结构(也就是所说的“图形”),包括结点和通过关系(relation)相互连接的边。 与数学类似,某些特定操作在这类模型上会格外简单。这要感谢树形结构能链接信息、将相关信息(例如相关联的人)分组的本质。 这类数据库通常应用于关系(connection)需要建立明确边界的场景。例如,当你注册随便一个社交网络时,你朋友与你的关系,和他们朋友的朋友与你的关系,使用基于图形的数据库系统来处理会简单很多。
|