这篇文章主要介绍了详解Java编程中的策略模式,以及用策略模式来分析源码等内容,
策略模式属于对象的行为模式。其用意是针对一组算法,将每一个算法封装到具有共同接口的独立的类中,从而使得它们可以相互替换。策略模式使得算法可以在不影响到客户端的情况下发生变化。
策略模式的结构
策略模式是对算法的包装,是把使用算法的责任和算法本身分割开来,委派给不同的对象管理。策略模式通常把一个系列的算法包装到一系列的策略类里面,作为一个抽象策略类的子类。用一句话来说,就是:“准备一组算法,并将每一个算法封装起来,使得它们可以互换”。下面就以一个示意性的实现讲解策略模式实例的结构。
这个模式涉及到三个角色:
环境(Context)角色:持有一个Strategy的引用。
抽象策略(Strategy)角色:这是一个抽象角色,通常由一个接口或抽象类实现。此角色给出所有的具体策略类所需的接口。
具体策略(ConcreteStrategy)角色:包装了相关的算法或行为。
源代码
环境角色类
public class Context {
//持有一个具体策略的对象
private Strategy strategy;
/**
* 构造函数,传入一个具体策略对象
* @param strategy 具体策略对象
*/
public Context(Strategy strategy){
this.strategy = strategy;
}
/**
* 策略方法
*/
public void contextInterface(){
strategy.strategyInterface();
}
}
抽象策略类
public interface Strategy {
/**
* 策略方法
*/
public void strategyInterface();
}
具体策略类
public class ConcreteStrategyA implements Strategy {
@Override
public void strategyInterface() {
//相关的业务
}
}
public class ConcreteStrategyB implements Strategy {
@Override
public void strategyInterface() {
//相关的业务
}
}
public class ConcreteStrategyC implements Strategy {
@Override
public void strategyInterface() {
//相关的业务
}
}
以策略模式分析Java源码
声明:这里参考了Java源码分析-策略模式在Java集合框架实现代码中的体现
在java的集合框架中,构造Map或者Set时传入Comparator比较器,或者创建比较器传入Collections类的静态方法中作为方法的参数为Collection排序时,都使用了策略模式
简单的调用代码:
import java.util.*;
public class TestComparator {
public static void main(String args[]) {
LinkedList<String> list = new LinkedList<String>();
list.add("wangzhengyi");
list.add("bululu");
// 创建一个逆序比较器
Comparator<String> r = Collections.reverseOrder();
// 通过逆序比较器进行排序
Collections.sort(list, r);
System.out.println(list);
}
}
使用Collections.reverseOrder()方法实现一个比较器后,再调用Collections.sort(list, r)把比较器传入该方法中进行排序,下面看一下sort(list, r)中的代码:
public static <T> void sort(List<T> list, Comparator<? super T> c) {
Object[] a = list.toArray();
Arrays.sort(a, (Comparator)c);
ListIterator i = list.listIterator();
for (int j=0; j<a.length; j++) {
i.next();
i.set(a[j]);
}
}
Array.sort(a, (Comparator)c);这句继续把比较器传入处理,下面是Array.sort(a, (Comparator)c)的具体操作:
public static <T> void sort(T[] a, Comparator<? super T> c) {
if (LegacyMergeSort.userRequested)
legacyMergeSort(a, c);
else
TimSort.sort(a, c);
}
static <T> void sort(T[] a, Comparator<? super T> c) {
sort(a, 0, a.length, c);
}
/** To be removed in a future release. */
private static <T> void legacyMergeSort(T[] a, Comparator<? super T> c) {
T[] aux = a.clone();
if (c==null)
mergeSort(aux, a, 0, a.length, 0);
else
mergeSort(aux, a, 0, a.length, 0, c);
}
继续跟下去好了:
private static void mergeSort(Object[] src,
Object[] dest,
int low, int high, int off,
Comparator c) {
int length = high - low;
// Insertion sort on smallest arrays
if (length < INSERTIONSORT_THRESHOLD) {
for (int i=low; i<high; i++)
for (int j=i; j>low && c.compare(dest[j-1], dest[j])>0; j--)
swap(dest, j, j-1);
return;
}
// Recursively sort halves of dest into src
int destLow = low;
int destHigh = high;
low += off;
high += off;
int mid = (low + high) >>> 1;
mergeSort(dest, src, low, mid, -off, c);
mergeSort(dest, src, mid, high, -off, c);
// If list is already sorted, just copy from src to dest. This is an
// optimization that results in faster sorts for nearly ordered lists.
if (c.compare(src[mid-1], src[mid]) <= 0) {
System.arraycopy(src, low, dest, destLow, length);
return;
}
// Merge sorted halves (now in src) into dest
for(int i = destLow, p = low, q = mid; i < destHigh; i++) {
if (q >= high || p < mid && c.compare(src[p], src[q]) <= 0)
dest = src[p++];
else
dest = src[q++];
}
}
把使用到比较器的代码挑选出来:
// If list is already sorted, just copy from src to dest. This is an
// optimization that results in faster sorts for nearly ordered lists.
if (c.compare(src[mid-1], src[mid]) <= 0) {
System.arraycopy(src, low, dest, destLow, length);
return;
}
这里的compare方法在Comparator接口中也有定义:
public interface Comparator<T> {
int compare(T o1, T o2);
}
由于这里是泛型实现了Comparator,所以实际执行时,会根据比较器的具体实现类调用到实现代码,也就是上面创建的逆序比较器的compare方法,其实现方法如下:
public int compare(Comparable<Object> c1, Comparable<Object> c2) {
return c2.compareTo(c1);
}
|
|