A股上市公司传智教育(股票代码 003032)旗下技术交流社区北京昌平校区

本帖最后由 就业高冷派 于 2017-12-25 17:52 编辑

      
圣诞节快乐,这两天朋友圈被一句话刷屏了
给我一个圣诞帽!@微信官网
发了朋友圈的人都成功地
在头像上加了一顶红色的圣诞帽

如果你发了朋友圈却没有圣诞帽
那是因为…
大家的圣诞帽都是P哒
别傻傻地等微信回复帽子给你了
还是自己动手,用Python给你的头像加上圣诞帽吧
用到的工具
  • OpenCV
  • dlib(dlib的人脸检测比OpenCV更好用,而且dlib有OpenCV没有的关键点检测。

流程一、素材准备
准备一个圣诞帽的素材,格式最好为PNG,因为PNG的话我们可以直接用Alpha通道作为掩膜使用,如下图:
通过通道分离可以得到圣诞帽图像的alpha通道。代码如下:
[Python] 纯文本查看 复制代码
r,g,b,a = cv2.split(hat_img) 
  rgb_hat = cv2.merge((r,g,b))
  cv2.imwrite("hat_alpha.jpg",a)

为了能够与rgb通道的头像图片进行运算,我们把rgb三通道合成一张rgb的彩色帽子图。Alpha通道的图像如下图所示。

二、人脸检测与人脸关键点检测
用下面这张图作为我们的测试图片。

下面我们用dlib的正脸检测器进行人脸检测,代码如下:
[Python] 纯文本查看 复制代码
# dlib人脸关键点检测器
predictor_path = "shape_predictor_5_face_landmarks.dat"
predictor = dlib.shape_predictor(predictor_path)
# dlib正脸检测器
detector = dlib.get_frontal_face_detector()
# 正脸检测
dets = detector(img, 1)
# 如果检测到人脸
if len(dets)>0:  
  for d in dets:
    x,y,w,h = d.left(),d.top(), d.right()-d.left(), d.bottom()-d.top()# x,y,w,h = faceRect  
    cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2,8,0)
# 关键点检测,5个关键点
shape = predictor(img, d)
for point in shape.parts():
cv2.circle(img,(point.x,point.y),3,color=(0,255,0))
cv2.imshow("image",img)
cv2.waitKey()  

效果如下图:

三、调整帽子大小
选取两个眼角的点,求中心作为放置帽子的x方向的参考坐标,y方向的坐标用人脸框上线的y坐标表示。然后我们根据人脸检测得到的人脸的大小调整帽子的大小,使帽子大小合适。
[Python] 纯文本查看 复制代码
# 选取左右眼眼角的点
point1 = shape.part(0)point2 = shape.part(2)
# 求两点中心
eyes_center = ((point1.x+point2.x)//2,(point1.y+point2.y)//2)
# cv2.circle(img,eyes_center,3,color=(0,255,0))  
# cv2.imshow("image",img)# cv2.waitKey()
#  根据人脸大小调整帽子大小
factor = 1.5
resized_hat_h = int(round(rgb_hat.shape[0]*w/rgb_hat.shape[1]*factor))
resized_hat_w = int(round(rgb_hat.shape[1]*w/rgb_hat.shape[1]*factor))
if resized_hat_h > y:   
resized_hat_h = y-1
# 根据人脸大小调整帽子大小
resized_hat = cv2.resize(rgb_hat,(resized_hat_w,resized_hat_h))
四、提取帽子和需要添加帽子的区域
去Alpha通道作为mask。并求反。这两个mask一个用于把帽子图中的帽子区域取出来,一个用于把人物图中需要填帽子的区域空出来。
[Python] 纯文本查看 复制代码
# 用alpha通道作为mask   
mask = cv2.resize(a,(resized_hat_w,resized_hat_h))   
mask_inv =  cv2.bitwise_not(mask)

从原图中取出需要添加帽子的区域,这里我们用的是位运算操作。
[Python] 纯文本查看 复制代码
# 帽子相对与人脸框上线的偏移量
dh = 0dw = 0
# 原图ROI
# bg_roi = img[y+dh-resized_hat_h:y+dh, x+dw:x+dw+resized_hat_w]
bg_roi = img[y+dh-resized_hat_h:y+dh,(eyes_center[0]-resized_hat_w//3):(eyes_center[0]+resized_hat_w//3*2)]
# 原图ROI中提取放帽子的区域
bg_roi = bg_roi.astype(float)
mask_inv = cv2.merge((mask_inv,mask_inv,mask_inv))
alpha = mask_inv.astype(float)/255
# 相乘之前保证两者大小一致(可能会由于四舍五入原因不一致)
alpha = cv2.resize(alpha,(bg_roi.shape[1],bg_roi.shape[0]))
# print("alpha size: ",alpha.shape)
# print("bg_roi size: ",bg_roi.shape)
bg = cv2.multiply(alpha, bg_roi)
bg = bg.astype('uint8')

这是的背景区域(bg)如下图所示。可以看到,刚好是需要填充帽子的区域缺失了。

然后我们提取帽子区域。
[Python] 纯文本查看 复制代码
# 提取帽子区域   
hat = cv2.bitwise_and(resized_hat,resized_hat,mask = mask)

提取得到的帽子区域如下图。帽子区域正好与上一个背景区域互补。

五、添加圣诞帽
最后把两个区域相加。再放回到原图中去,就可以得到我们想要的圣诞帽图了。这里需要注意的就是,相加之前resize一下保证两者大小一致,因为可能会由于四舍五入原因不一致。
[Python] 纯文本查看 复制代码
# 相加之前保证两者大小一致(可能会由于四舍五入原因不一致)   
hat = cv2.resize(hat,(bg_roi.shape[1],bg_roi.shape[0]))   
# 两个ROI区域相加   
add_hat = cv2.add(bg,hat)   
# cv2.imshow("add_hat",add_hat) 
# 把添加好帽子的区域放回原图
img[y+dh-resized_hat_h:y+dh,(eyes_center[0]-resized_hat_w//3):(eyes_center[0]+resized_hat_w//3*2)] = add_hat

最后最终效果图。








2 个回复

倒序浏览
我来占层楼啊  
回复 使用道具 举报
回复 使用道具 举报
您需要登录后才可以回帖 登录 | 加入黑马