开篇 好久没有更新Tensorflow与NLP系列了,时间一长就比较容易遗忘,所以今天还是要开始这些源码的解读。老规矩,原理还是一带而过,重要的是代码的解读,我相信整个代码完整的流程掌握了,原理就不在话下了。 ![]()
整个模型的流程在图上都有完整的体现。 train.py参数设置首先是大量的参数设置 # Data loading paramstf.flags.DEFINE_float("dev_sample_percentage", .1, "Percentage of the training data to use for validation")tf.flags.DEFINE_string("positive_data_file", "./data/rt-polaritydata/rt-polarity.pos", "Data source for the positive data.")tf.flags.DEFINE_string("negative_data_file", "./data/rt-polaritydata/rt-polarity.neg", "Data source for the negative data.")# Model Hyperparameterstf.flags.DEFINE_integer("embedding_dim", 128, "Dimensionality of character embedding (default: 128)")tf.flags.DEFINE_string("filter_sizes", "3,4,5", "Comma-separated filter sizes (default: '3,4,5')")tf.flags.DEFINE_integer("num_filters", 128, "Number of filters per filter size (default: 128)")tf.flags.DEFINE_float("dropout_keep_prob", 0.5, "Dropout keep probability (default: 0.5)")tf.flags.DEFINE_float("l2_reg_lambda", 0.0, "L2 regularization lambda (default: 0.0)")# Training parameterstf.flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)")tf.flags.DEFINE_integer("num_epochs", 200, "Number of training epochs (default: 200)")tf.flags.DEFINE_integer("evaluate_every", 100, "Evaluate model on dev set after this many steps (default: 100)")tf.flags.DEFINE_integer("checkpoint_every", 100, "Save model after this many steps (default: 100)")tf.flags.DEFINE_integer("num_checkpoints", 5, "Number of checkpoints to store (default: 5)")# Misc Parameterstf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")FLAGS = tf.flags.FLAGS# FLAGS._parse_flags()# print("\nParameters:")# for attr, value in sorted(FLAGS.__flags.items()):# print("{}={}".format(attr.upper(), value))# print("")- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
参数的设置函数主要有三个参数,参数的名字,参数的默认值,以及参数的解释。这里打印参数的代码被注释了。为什么要这么设置参数呢,因为这样我们可以通过命令行传入我们想要传入的参数,而不需要改动我们的代码。 这里还是要放上源码的地址,以备我忘记github。 preprocessdef preprocess(): # Data Preparation # ================================================== # Load data print("Loading data...") x_text, y = data_helpers.load_data_and_labels(FLAGS.positive_data_file, FLAGS.negative_data_file) # Build vocabulary max_document_length = max([len(x.split(" ")) for x in x_text]) vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length) x = np.array(list(vocab_processor.fit_transform(x_text))) # Randomly shuffle data np.random.seed(10) shuffle_indices = np.random.permutation(np.arange(len(y))) x_shuffled = x[shuffle_indices] y_shuffled = y[shuffle_indices] # Split train/test set # TODO: This is very crude, should use cross-validation dev_sample_index = -1 * int(FLAGS.dev_sample_percentage * float(len(y))) x_train, x_dev = x_shuffled[:dev_sample_index], x_shuffled[dev_sample_index:] y_train, y_dev = y_shuffled[:dev_sample_index], y_shuffled[dev_sample_index:] del x, y, x_shuffled, y_shuffled print("Vocabulary Size: {:d}".format(len(vocab_processor.vocabulary_))) print("Train/Dev split: {:d}/{:d}".format(len(y_train), len(y_dev))) return x_train, y_train, vocab_processor, x_dev, y_dev关于预处理的代码,先是加载数据的代码,我直接放上相应的函数,没有什么特别的可以讲,就是一个加载数据的函数。 def load_data_and_labels(positive_data_file, negative_data_file): """ Loads MR polarity data from files, splits the data into words and generates labels. Returns split sentences and labels. """ # Load data from files positive_examples = list(open(positive_data_file, "r", encoding='utf-8').readlines()) positive_examples = [s.strip() for s in positive_examples] negative_examples = list(open(negative_data_file, "r", encoding='utf-8').readlines()) negative_examples = [s.strip() for s in negative_examples] # Split by words x_text = positive_examples + negative_examples x_text = [clean_str(sent) for sent in x_text] # Generate labels positive_labels = [[0, 1] for _ in positive_examples] negative_labels = [[1, 0] for _ in negative_examples] y = np.concatenate([positive_labels, negative_labels], 0) return [x_text, y]值得一提的就是它返回的值,x_text是一个由每句词的列表组成的列表,y的话是由一个长度为2的列表组成的列表。 预处理的第二步就是构建词典,把我们的句子序列(由单词列表构成)转换成数据序列(单词在词典里面的索引),这边完全由tensorflow的内置函数完成。 之后就是打乱数据和划分训练和测试集了。这些代码都是可以直接复用的代码。大部分的深度学习NLP任务都要经过相应的处理。后面我会讲到如何使用训练好的词向量初始化embedding层,它之前的处理和这个也是一样的。这不过,他们使用的词典可能就不是同一个词典了。 train的主体代码先放上完整的代码,我再逐步分析,相关的分析都在代码注释中体现。 def train(x_train, y_train, vocab_processor, x_dev, y_dev): # Training # ================================================== with tf.Graph().as_default(): session_conf = tf.ConfigProto( allow_soft_placement=FLAGS.allow_soft_placement, log_device_placement=FLAGS.log_device_placement) sess = tf.Session(config=session_conf) with sess.as_default(): cnn = TextCNN( sequence_length=x_train.shape[1], num_classes=y_train.shape[1], vocab_size=len(vocab_processor.vocabulary_), embedding_size=FLAGS.embedding_dim, filter_sizes=list(map(int, FLAGS.filter_sizes.split(","))), num_filters=FLAGS.num_filters, l2_reg_lambda=FLAGS.l2_reg_lambda) # Define Training procedure global_step = tf.Variable(0, name="global_step", trainable=False) optimizer = tf.train.AdamOptimizer(1e-3) grads_and_vars = optimizer.compute_gradients(cnn.loss) train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step) # Keep track of gradient values and sparsity (optional) grad_summaries = [] for g, v in grads_and_vars: if g is not None: grad_hist_summary = tf.summary.histogram("{}/grad/hist".format(v.name), g) sparsity_summary = tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g)) grad_summaries.append(grad_hist_summary) grad_summaries.append(sparsity_summary) grad_summaries_merged = tf.summary.merge(grad_summaries) # Output directory for models and summaries timestamp = str(int(time.time())) out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp)) print("Writing to {}\n".format(out_dir)) # Summaries for loss and accuracy loss_summary = tf.summary.scalar("loss", cnn.loss) acc_summary = tf.summary.scalar("accuracy", cnn.accuracy) # Train Summaries train_summary_op = tf.summary.merge([loss_summary, acc_summary, grad_summaries_merged]) train_summary_dir = os.path.join(out_dir, "summaries", "train") train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph) # Dev summaries dev_summary_op = tf.summary.merge([loss_summary, acc_summary]) dev_summary_dir = os.path.join(out_dir, "summaries", "dev") dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph) # Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints")) checkpoint_prefix = os.path.join(checkpoint_dir, "model") if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints) # Write vocabulary vocab_processor.save(os.path.join(out_dir, "vocab")) # Initialize all variables sess.run(tf.global_variables_initializer()) def train_step(x_batch, y_batch): """ A single training step """ feed_dict = { cnn.input_x: x_batch, cnn.input_y: y_batch, cnn.dropout_keep_prob: FLAGS.dropout_keep_prob } _, step, summaries, loss, accuracy = sess.run( [train_op, global_step, train_summary_op, cnn.loss, cnn.accuracy], feed_dict) time_str = datetime.datetime.now().isoformat() print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy)) train_summary_writer.add_summary(summaries, step) def dev_step(x_batch, y_batch, writer=None): """ Evaluates model on a dev set """ feed_dict = { cnn.input_x: x_batch, cnn.input_y: y_batch, cnn.dropout_keep_prob: 1.0 } step, summaries, loss, accuracy = sess.run( [global_step, dev_summary_op, cnn.loss, cnn.accuracy], feed_dict) time_str = datetime.datetime.now().isoformat() print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy)) if writer: writer.add_summary(summaries, step) # Generate batches batches = data_helpers.batch_iter( list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs) # Training loop. For each batch... for batch in batches: x_batch, y_batch = zip(*batch) train_step(x_batch, y_batch) current_step = tf.train.global_step(sess, global_step) if current_step % FLAGS.evaluate_every == 0: print("\nEvaluation:") dev_step(x_dev, y_dev, writer=dev_summary_writer) print("") if current_step % FLAGS.checkpoint_every == 0: path = saver.save(sess, checkpoint_prefix, global_step=current_step) print("Saved model checkpoint to {}\n".format(path))CNN模型主要是重点理解卷积和池化的过程 class TextCNN(object): """ A CNN for text classification. Uses an embedding layer, followed by a convolutional, max-pooling and softmax layer. """ ##初始化函数 def __init__( self, sequence_length, num_classes, vocab_size, embedding_size, filter_sizes, num_filters, l2_reg_lambda=0.0): # Placeholders for input, output and dropout self.input_x = tf.placeholder(tf.int32, [None, sequence_length], name="input_x") self.input_y = tf.placeholder(tf.float32, [None, num_classes], name="input_y") self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob") # Keeping track of l2 regularization loss (optional) l2_loss = tf.constant(0.0) # Embedding layer ##使用cpu做embedding层的初始化比较快 with tf.device('/cpu:0'), tf.name_scope("embedding"): self.W = tf.Variable( tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0), name="W") self.embedded_chars = tf.nn.embedding_lookup(self.W, self.input_x) ##增加维度,-1代表的是最后一维,这边主要是维护最后一维的通道数,图像是none×x×y×chanel的 self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1) # Create a convolution + maxpool layer for each filter size pooled_outputs = [] for i, filter_size in enumerate(filter_sizes): with tf.name_scope("conv-maxpool-%s" % filter_size): # Convolution Layer filter_shape = [filter_size, embedding_size, 1, num_filters] ##前两个是卷积的长和宽,第三个是通道数,最后一个就是输出的通道数,其实就是filter的数目 W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W") b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="b") conv = tf.nn.conv2d( self.embedded_chars_expanded, W, strides=[1, 1, 1, 1], padding="VALID", name="conv") # Apply nonlinearity h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu") # Maxpooling over the outputs pooled = tf.nn.max_pool( h, ksize=[1, sequence_length - filter_size + 1, 1, 1], ##主要是第二个和第三个参数 strides=[1, 1, 1, 1], padding='VALID', name="pool") pooled_outputs.append(pooled) # Combine all the pooled features num_filters_total = num_filters * len(filter_sizes) ##以第四维来拼接这个张量 self.h_pool = tf.concat(pooled_outputs, 3) ##把这个张量压平 self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total]) # Add dropout with tf.name_scope("dropout"): self.h_drop = tf.nn.dropout(self.h_pool_flat, self.dropout_keep_prob) # Final (unnormalized) scores and predictions with tf.name_scope("output"): W = tf.get_variable( "W", shape=[num_filters_total, num_classes], initializer=tf.contrib.layers.xavier_initializer()) b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="b") l2_loss += tf.nn.l2_loss(W) l2_loss += tf.nn.l2_loss(b) self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name="scores") self.predictions = tf.argmax(self.scores, 1, name="predictions") # Calculate mean cross-entropy loss with tf.name_scope("loss"): losses = tf.nn.softmax_cross_entropy_with_logits(logits=self.scores, labels=self.input_y) self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss # Accuracy with tf.name_scope("accuracy"): correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1)) self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")
|
|