基本排序算法
基本排序的基本思想非常类似,重排列时用的技术基本都是一组嵌套的for循环: 外循环遍历数组的每一项,内循环则用于比较元素。
冒泡排序
最笨最基本最经典点的方法,不管学什么语言,说到排序,第一个接触的就是它了吧。基本思想什么的太经典了,就不复数了,直接用例子说明过程吧:
E A D B H
经过一次排列后,变成
A E D B H
前两个元素互换了,接下来变成:
A D E B H
第二个和第三个互换,继续:
A D B E H
第三个和第四个互换,最后,第二个和第三个元素还会互换一次,得到最终的顺序为:
A B D E H
好了,其实基本思想就是逐个的比较,下面就实现一下:
function bubleSort(arr) {
var len = arr.length;
for (let outer = len ; outer >= 2; outer--) {
for(let inner = 0; inner <=outer - 1; inner++) {
if(arr[inner] > arr[inner + 1]) {
let temp = arr[inner];
arr[inner] = arr[inner + 1];
arr[inner + 1] = temp;
}
}
}
return arr;
}
这里有两点需要注意:
外层循环,从最大值开始递减,因为内层是两两比较,因此最外层当>=2时即可停止;
内层是两两比较,从0开始,比较inner与inner+1,因此,临界条件是inner<outer -1
在比较交换的时候,就是计算机中最经典的交换策略,用临时变量temp保存值,但是面试官问过我,ES6有没有简单的方法实现? 有的,如下:
arr2 = [1,2,3,4];
[arr2[0],arr2[1]] = [arr2[1],arr2[0]] //ES6解构赋值
console.log(arr2) // [2, 1, 3, 4]
所以,刚才的冒牌排序可以优化如下:
function bubleSort(arr) {
var len = arr.length;
for (let outer = len ; outer >= 2; outer--) {
for(let inner = 0; inner <=outer - 1; inner++) {
if(arr[inner] > arr[inner + 1]) {
[arr[inner],arr[inner+1]] = [arr[inner+1],arr[inner]]
}
}
}
return arr;
}
选择排序
选择排序是从数组的开头开始,将第一个元素和其他元素作比较,检查完所有的元素后,最小的放在第一个位置,接下来再开始从第二个元素开始,重复以上一直到最后。
有了刚才的铺垫,我觉得不用再演示了,很简单嘛: 外层循环从0开始到length-1, 然后内层比较,最小的放开头,走你:
function selectSort(arr) {
var len = arr.length;
for(let i = 0 ;i < len - 1; i++) {
for(let j = i ; j<len; j++) {
if(arr[j] < arr[i]) {
[arr[i],arr[j]] = [arr[j],arr[i]];
}
}
}
return arr
}
简单说两句:
外层循环的i表示第几轮,arr[i]就表示当前轮次最靠前(小)的位置;
内层从i开始,依次往后数,找到比开头小的,互换位置即可
结束,收工!!
插入排序
插入排序核心–扑克牌思想: 就想着自己在打扑克牌,接起来一张,放哪里无所谓,再接起来一张,比第一张小,放左边,继续接,可能是中间数,就插在中间….依次
其实每种算法,主要是理解其原理,至于写代码,都是在原理之上顺理成章的事情:
首先将待排序的第一个记录作为一个有序段
从第二个开始,到最后一个,依次和前面的有序段进行比较,确定插入位置
function insertSort(arr) {
for(let i = 1; i < arr.length; i++) { //外循环从1开始,默认arr[0]是有序段
for(let j = i; j > 0; j--) { //j = i,将arr[j]依次插入有序段中
if(arr[j] < arr[j-1]) {
[arr[j],arr[j-1]] = [arr[j-1],arr[j]];
} else {
break;
}
}
}
return arr;
}
分析: 注意这里两次循环中,i和j的含义:
i是外循环,依次把后面的数插入前面的有序序列中,默认arr[0]为有序的,i就从1开始
j进来后,依次与前面队列的数进行比较,因为前面的序列是有序的,因此只需要循环比较、交换即可
注意这里的break,因为前面是都是有序的序列,所以如果当前要插入的值arr[j]大于或等于arr[j-1],则无需继续比较,直接下一次循环就可以了。
时间复杂度
乍一看,好像插入排序速度还不慢,但是要知道: 当序列正好逆序的时候,每次插入都要一次次交换,这个速度和冒泡排序是一样的,时间复杂度O(n²); 当然运气好,前面是有序的,那时间复杂度就只有O(n)了,直接插入即可。
排序算法 平均时间复杂度 最坏时间复杂度 空间复杂度 是否稳定
冒泡排序 O(n²) O(n²) O(1) 是
选择排序 O(n²) O(n²) O(1) 不是
直接插入排序 O(n²) O(n²) O(1) 是
好了,这张表如何快速记忆呢? 方法就是一开始写的基本排序算法 。 一开始就说到,基本思想就是两层循环嵌套,第一遍找元素O(n),第二遍找位置O(n),所以这几种方法,时间复杂度就可以这么简便记忆啦!
高级排序算法
如果所有排序都像上面的基本方法一样,那么对于大量数据的处理,将是灾难性的,老哥,只是让你排个序,你都用了O(n²)。 好吧,所以接下来这些高级排序算法,在大数据上,可以大大的减少复杂度。
快速排序
快速排序可以说是对于前端最最最最重要的排序算法,没有之一了,面试官问到排序算法,快排的概率能有80%以上(我瞎统计的…信不信由你)。
所以快排是什么呢?
快排是处理大数据最快的排序算法之一。它是一种分而治之的算法,通过递归的方式将数据依次分解为包含较小元素和较大元素的不同子序列。该算法不断重复这个步骤直至所有数据都是有序的。
简单说: 找到一个数作为参考,比这个数字大的放在数字左边,比它小的放在右边; 然后分别再对左边和右变的序列做相同的操作:
选择一个基准元素,将列表分割成两个子序列;
对列表重新排序,将所有小于基准值的元素放在基准值前面,所有大于基准值的元素放在基准值的后面;
分别对较小元素的子序列和较大元素的子序列重复步骤1和2
function quickSort(arr) {
if(arr.length <= 1) {
return arr; //递归出口
}
var left = [],
right = [],
current = arr.splice(0,1); //注意splice后,数组长度少了一个
for(let i = 0; i < arr.length; i++) {
if(arr[i] < current) {
left.push(arr[i]) //放在左边
} else {
right.push(arr[i]) //放在右边
}
}
return quickSort(left).concat(current,quickSort(right)); //递归
}
希尔排序
希尔排序是插入排序的改良算法,但是核心理念与插入算法又不同,它会先比较距离较远的元素,而非相邻的元素。文字太枯燥,还是看下面的动图吧:
在实现之前,先看下刚才插入排序怎么写的:
function insertSort(arr) {
for(let i = 1; i < arr.length - 1; i++) { //外循环从1开始,默认arr[0]是有序段
for(let j = i; j > 0; j--) { //j = i,将arr[j]依次插入有序段中
if(arr[j] < arr[j-1]) {
[arr[j],arr[j-1]] = [arr[j-1],arr[j]];
} else {
continue;
}
}
}
return arr;
}
现在,不同之处是在上面的基础上,让步长按照3、2、1来进行比较,相当于是三层循环和嵌套啦。
insertSort(arr,[3,2,1]);
function shellSort(arr,gap) {
console.log(arr)//为了方便观察过程,使用时去除
for(let i = 0; i<gap.length; i++) { //最外层循环,一次取不同的步长,步长需要预先给出
let n = gap[i]; //步长为n
for(let j = i + n; j < arr.length; j++) { //接下类和插入排序一样,j循环依次取后面的数
for(let k = j; k > 0; k-=n) { //k循环进行比较,和直接插入的唯一区别是1变为了n
if(arr[k] < arr[k-n]) {
[arr[k],arr[k-n]] = [arr[k-n],arr[k]];
console.log(`当前序列为[${arr}] \n 交换了${arr[k]}和${arr[k-n]}`)//为了观察过程
} else {
continue;
}
}
}
}
return arr;
}
直接看这个三层循环嵌套的内容,会稍显复杂,这也是为什么先把插入排序写在前面做一个对照。 其实三层循环的内两层完全就是一个插入排序,只不过原来插入排序间隔为1,而希尔排序的间隔是变换的n, 如果把n修改为1,就会发现是完全一样的了。
运行一下看看
var arr = [3, 2, 45, 6, 55, 23, 5, 4, 8, 9, 19, 0];
var gap = [3,2,1];
console.log(shellSort(arr,gap))
结果如下:
(12) [3, 2, 45, 6, 55, 23, 5, 4, 8, 9, 19, 0] //初始值
当前序列为[3,2,23,6,55,45,5,4,8,9,19,0]
交换了45和23
当前序列为[3,2,23,5,55,45,6,4,8,9,19,0]
交换了6和5
当前序列为[3,2,23,5,4,45,6,55,8,9,19,0]
交换了55和4
当前序列为[3,2,23,5,4,8,6,55,45,9,19,0]
交换了45和8
当前序列为[3,2,8,5,4,23,6,55,45,9,19,0]
交换了23和8
当前序列为[3,2,8,5,4,23,6,19,45,9,55,0]
交换了55和19
当前序列为[3,2,8,5,4,23,6,19,0,9,55,45]
交换了45和0
当前序列为[3,2,8,5,4,0,6,19,23,9,55,45]
交换了23和0
当前序列为[3,2,0,5,4,8,6,19,23,9,55,45]
交换了8和0
当前序列为[0,2,3,5,4,8,6,19,23,9,55,45]
交换了3和0
当前序列为[0,2,3,5,4,8,6,9,23,19,55,45]
交换了19和9
当前序列为[0,2,3,4,5,8,6,9,23,19,55,45]
交换了5和4
当前序列为[0,2,3,4,5,6,8,9,23,19,55,45]
交换了8和6
当前序列为[0,2,3,4,5,6,8,9,19,23,55,45]
交换了23和19
当前序列为[0,2,3,4,5,6,8,9,19,23,45,55]
交换了55和45
时间复杂度总结
wait? 不是还有很多排序算法的吗?怎么不继续了? 是的,其实排序是很深奥的问题,如果研究透各个方法的实现、性能等等,内容恐怕多到爆炸了…而且这个也主要是为前端常见算法 问题的总结,个人觉得到这里就差不多了
排序算法 平均时间复杂度 最坏时间复杂度 空间复杂度 是否稳定
冒泡排序 O(n²) O(n²) O(1) 是
选择排序 O(n²) O(n²) O(1) 不是
直接插入排序 O(n²) O(n²) O(1) 是
快速排序 O(nlogn) O(n²) O(logn) 不是
希尔排序 O(nlogn) O(n^s) O(1) 不是
是否稳定
如果不考虑稳定性,快排似乎是接近完美的一种方法,但可惜它是不稳定的。 那什么是稳定性呢?
通俗的讲有两个相同的数A和B,在排序之前A在B的前面,而经过排序之后,B跑到了A的前面,对于这种情况的发生,我们管他叫做排序的不稳定性,而快速排序在对存在相同数进行排序时就有可能发生这种情况。
/* 比如对(5,3A,6,3B ) 进行排序,排序之前相同的数3A与3B,A在B的前面,经过排序之后会变成 (3B,3A,5,6) 所以说快速排序是一个不稳定的排序 /*
稳定性有什么意义? 个人理解对于前端来说,比如我们熟知框架中的虚拟DOM的比较,我们对一个<ul>列表进行渲染,当数据改变后需要比较变化时,不稳定排序或操作将会使本身不需要变化的东西变化,导致重新渲染,带来性能的损耗。
辅助记忆
时间复杂度记忆
冒泡、选择、直接 排序需要两个for循环,每次只关注一个元素,平均时间复杂度为O(n²)(一遍找元素O(n),一遍找位置O(n))
快速、归并、希尔、堆基于二分思想,log以2为底,平均时间复杂度为O(nlogn)(一遍找元素O(n),一遍找位置O(logn))
稳定性记忆-“快希选堆”(快牺牲稳定性)
递归
递归,其实就是自己调用自己。
很多时候我们自己觉得麻烦或者感觉 “想象不过来”,主要是自己和自己较真,因为交给递归,它自己会帮你完成需要做的。
递归步骤:
寻找出口,递归一定有一个出口,锁定出口,保证不会死循环
递归条件,符合递归条件,自己调用自己。
talk is cheap,show me code!
斐波那契数列,每个语言讲递归都会从这个开始,但是既然搞前端,就搞点不一样的吧,从对象的深度克隆(deep clone)说起
Deep Clone :实现对一个对象(object)的深度克隆
//所谓深度克隆,就是当对象的某个属性值为object或array的时候,要获得一份copy,而不是直接拿到引用值
function deepClone(origin,target) { //origin是被克隆对象,target是我们获得copy
var target = target || {}; //定义target
for(var key in origin) { //遍历原对象
if(origin.hasOwnProperty(key)) {
if(Array.isArray(origin[key])) { //如果是数组
target[key] = [];
deepClone(origin[key],target[key]) //递归
} else if (typeof origin[key] === 'object' && origin[key] !== null) {
target[key] = {};
deepClone(origin[key],target[key]) //递归
} else {
target[key] = origin[key];
}
}
}
return target;
}
这个可以说是前端笔试/面试中经常经常遇到的问题了,思路是很清晰的:
出口: 遍历对象结束后return
递归条件: 遇到引用值Array 或 Object
剩下的事情,交给JS自己处理就好了,我们不用考虑内部的层层嵌套,想太多 |
|