A股上市公司传智教育(股票代码 003032)旗下技术交流社区北京昌平校区

 找回密码
 加入黑马

QQ登录

只需一步,快速开始

环境:ubuntu16.04+tensorflow+cpu

文件路径:/home/qf/tensorflow/tf/tf2

1、训练的时候分批,测试的时候一次性测试,占用显存较大



  • import tensorflow as tf



  • import tensorflow.examples.tutorials.mnist.input_data as input_data



  • mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)     #



  • x = tf.placeholder(tf.float32, [None, 784])                        #



  • y_actual = tf.placeholder(tf.float32, shape=[None, 10])            #







  • #



  • def weight_variable(shape):



  •   initial = tf.truncated_normal(shape, stddev=0.1)



  •   return tf.Variable(initial)







  • #



  • def bias_variable(shape):



  •   initial = tf.constant(0.1, shape=shape)



  •   return tf.Variable(initial)







  • #



  • def conv2d(x, W):



  •   return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')







  • #



  • def max_pool(x):



  •   return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')







  • #



  • x_image = tf.reshape(x, [-1,28,28,1])         #



  • W_conv1 = weight_variable([5, 5, 1, 32])      



  • b_conv1 = bias_variable([32])      



  • h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)     #28*28*32



  • h_pool1 = max_pool(h_conv1)                                  #14*14*32







  • W_conv2 = weight_variable([5, 5, 32, 64])



  • b_conv2 = bias_variable([64])



  • h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)      #14*14*64



  • h_pool2 = max_pool(h_conv2)                                   #7*7*64







  • W_fc1 = weight_variable([7 * 7 * 64, 1024])



  • b_fc1 = bias_variable([1024])



  • h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])              #



  • h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)    #







  • keep_prob = tf.placeholder("float")



  • h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)                  #







  • W_fc2 = weight_variable([1024, 10])



  • b_fc2 = bias_variable([10])



  • y_predict=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)   #







  • ###



  • cross_entropy = -tf.reduce_sum(y_actual*tf.log(y_predict))     #



  • train_step = tf.train.GradientDescentOptimizer(1e-3).minimize(cross_entropy)    #



  • correct_prediction = tf.equal(tf.argmax(y_predict,1), tf.argmax(y_actual,1))   



  • accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))                 #



  • sess=tf.InteractiveSession()                          



  • sess.run(tf.initialize_all_variables())



  • for i in range(20000):



  •   batch = mnist.train.next_batch(50)



  •   if i%100 == 0:                  #



  •     train_acc = accuracy.eval(feed_dict={x:batch[0], y_actual: batch[1], keep_prob: 1.0})



  •     print 'step %d, training accuracy %g'%(i,train_acc)



  •     train_step.run(feed_dict={x: batch[0], y_actual: batch[1], keep_prob: 0.5})







  • test_acc=accuracy.eval(feed_dict={x: mnist.test.images, y_actual: mnist.test.labels, keep_prob: 1.0})



  • print "test accuracy %g"%test_acc



  • #print ("test accuracy ",test_acc)


2、测试的时候也可以设置较小的batch来看准确率



  • import tensorflow as tf



  • import tensorflow.examples.tutorials.mnist.input_data as input_data



  • mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)     #



  • x = tf.placeholder(tf.float32, [None, 784])                        #



  • y_actual = tf.placeholder(tf.float32, shape=[None, 10])            #







  • #



  • def weight_variable(shape):



  •   initial = tf.truncated_normal(shape, stddev=0.1)



  •   return tf.Variable(initial)







  • #



  • def bias_variable(shape):



  •   initial = tf.constant(0.1, shape=shape)



  •   return tf.Variable(initial)







  • #



  • def conv2d(x, W):



  •   return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')







  • #



  • def max_pool(x):



  •   return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')







  • #



  • x_image = tf.reshape(x, [-1,28,28,1])         #



  • W_conv1 = weight_variable([5, 5, 1, 32])      



  • b_conv1 = bias_variable([32])      



  • h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)     #28*28*32



  • h_pool1 = max_pool(h_conv1)                                  #14*14*32







  • W_conv2 = weight_variable([5, 5, 32, 64])



  • b_conv2 = bias_variable([64])



  • h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)      #14*14*64



  • h_pool2 = max_pool(h_conv2)                                   #7*7*64







  • W_fc1 = weight_variable([7 * 7 * 64, 1024])



  • b_fc1 = bias_variable([1024])



  • h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])              #



  • h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)    #







  • keep_prob = tf.placeholder("float")



  • h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)                  #







  • W_fc2 = weight_variable([1024, 10])



  • b_fc2 = bias_variable([10])



  • y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)   #







  • # 1.损失函数:cross_entropy



  • cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))



  • # 2.优化函数:AdamOptimizer



  • train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)







  • # 3.预测准确结果统计



  • # 预测值中最大值(1)即分类结果,是否等于原始标签中的(1)的位置。argmax()取最大值所在的下标



  • correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.arg_max(y_, 1))  



  • accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))











  • # 如果一次性来做测试的话,可能占用的显存会比较多,所以测试的时候也可以设置较小的batch来看准确率



  • test_acc_sum = tf.Variable(0.0)



  • batch_acc = tf.placeholder(tf.float32)



  • new_test_acc_sum = tf.add(test_acc_sum, batch_acc)



  • update = tf.assign(test_acc_sum, new_test_acc_sum)







  • # 定义了变量必须要初始化,或者下面形式



  • sess.run(tf.global_variables_initializer())



  • # 或者某个变量单独初始化 如:



  • # x.initializer.run()







  • # 训练



  • for i in range(5000):



  •     X_batch, y_batch = mnist.train.next_batch(batch_size=50)



  •     if i % 500 == 0:



  •         train_accuracy = accuracy.eval(feed_dict={X_: X_batch, y_: y_batch, keep_prob: 1.0})



  •         print "step %d, training acc %g" % (i, train_accuracy)



  •     train_step.run(feed_dict={X_: X_batch, y_: y_batch, keep_prob: 0.5})  







  • # 全部训练完了再做测试,batch_size=100



  • for i in range(100):



  •     X_batch, y_batch = mnist.test.next_batch(batch_size=100)



  •     test_acc = accuracy.eval(feed_dict={X_: X_batch, y_: y_batch, keep_prob: 1.0})



  •     update.eval(feed_dict={batch_acc: test_acc})



  •     if (i+1) % 20 == 0:



  •         print "testing step %d, test_acc_sum %g" % (i+1, test_acc_sum.eval())



  • print " test_accuracy %g" % (test_acc_sum.eval() / 100.0)


3、查看中间层的结果--这一个程序不能单独运行,与上面的放到一个程序里



  • #!/usr/bin/python



  • #-*-coding:utf-8 -*-



  • import matplotlib.pyplot as plt  #



  • #import sys



  • #reload(sys)



  • #sys.setdefaultencoding('utf8')







  • #



  • import tensorflow.examples.tutorials.mnist.input_data as input_data



  • mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)  



  • img1 = mnist.train.images[1]



  • label1 = mnist.train.labels[1]



  • print label1  # 所以这个是数字 6 的图片



  • print 'img_data shape =', img1.shape  



  • # 我们需要把它转为 28 * 28 的矩阵



  • img1.shape = [28, 28]



  • print img1.shape



  • plt.imshow(img1)



  • plt.axis('off') # 不显示坐标轴



  • plt.show()   



  • # 我们可以通过设置 cmap 参数来显示灰度图



  • plt.imshow(img1, cmap='gray') # 'hot' 是热度图



  • plt.show()







  • #####################################







  • #查看中间结果



  • # 首先应该把 img1 转为正确的shape (None, 784)



  • X_img = img1.reshape([-1, 784])



  • y_img = mnist.train.labels[1].reshape([-1, 10])



  • # 我们要看 Conv1 的结果,即 h_conv1



  • result = h_conv1.eval(feed_dict={X_: X_img, y_: y_img, keep_prob: 1.0})



  • print result.shape



  • print type(result)



  • for _ in xrange(32):



  •     show_img = result[:,:,:,_]



  •     show_img.shape = [28, 28]



  •     plt.subplot(4, 8, _ + 1)



  •     plt.imshow(show_img, cmap='gray')



  •     plt.axis('off')



  • plt.show()






【转载】原文地址: https://blog.csdn.net/qq_38096703/article/details/81010736


1 个回复

倒序浏览
回复 使用道具 举报
您需要登录后才可以回帖 登录 | 加入黑马