--------------------------------------------------------------------------------------------
文章出处:http://blog.csdn.net/sdksdk0/article/details/53966430
作者:朱培 ID:sdksdk0
-------------------------------------------------------------------------------------------- 一、ElasticSearch和HbaseElasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是当前流行的企业级搜索引擎。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。 Elasticsearch的性能是solr的50倍。
HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩、
实时读写的分布式数据库
– 利用Hadoop HDFS作为其文件存储系统,利用Hadoop MapReduce来处理
HBase中的海量数据,利用Zookeeper作为其分布式协同服务
– 主要用来存储非结构化和半结构化的松散数据(列存 NoSQL 数据库)
二、需求分析&服务器环境设置主要是做一个文章的搜索。有文章标题、作者、摘要、内容四个主要信息。效果图如下:这里样式我就没怎么设置了。。。。想要好看一点的可以自己加css。
服务器: 在3台centos7中部署,主机名为node1-node3.安装好ElasticSearch并配置好集群, 1. 解压 2. 修改config/elasticsearch.yml (注意要顶格写,冒号后面要加一个空格) a) Cluster.name: tf (同一集群要一样) b) Node.name: node-1 (同一集群要不一样) c) Network.Host: 192.168.44.137 这里不能写127.0.0.1 3. 解压安装kibana 4. 再congfig目录下的kibana.yml中修改elasticsearch.url 5. 安装插件 Step 1: Install Marvel into Elasticsearch: | bin/plugin install license
bin/plugin install marvel-agent | Step 2: Install Marvel into Kibana | bin/kibana plugin --install elasticsearch/marvel/latest | Step 3: Start Elasticsearch and Kibana | bin/elasticsearch
bin/kibana |
启动好elasticsearch集群后, 然后启动zookeeper、hdfs、hbase。zkService.sh start 、start-all.sh、start-hbase.sh。接下来就是剩下编码步骤了。
三、编码开发1、首先在IntelliJ IDEA中新建一个maven工程,加入如下依赖。
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.9</version>
</dependency>
<!-- spring 3.2 -->
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-context</artifactId>
<version>3.2.0.RELEASE</version>
</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-orm</artifactId>
<version>3.2.0.RELEASE</version>
</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-aspects</artifactId>
<version>3.2.0.RELEASE</version>
</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-web</artifactId>
<version>3.2.0.RELEASE</version>
</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-webmvc</artifactId>
<version>3.2.0.RELEASE</version>
</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-test</artifactId>
<version>3.2.0.RELEASE</version>
</dependency>
<!-- JSTL -->
<dependency>
<groupId>jstl</groupId>
<artifactId>jstl</artifactId>
<version>1.2</version>
</dependency>
<dependency>
<groupId>taglibs</groupId>
<artifactId>standard</artifactId>
<version>1.1.2</version>
</dependency>
<!-- slf4j -->
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>1.7.10</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>1.7.10</version>
</dependency>
<!-- elasticsearch -->
<dependency>
<groupId>org.elasticsearch</groupId>
<artifactId>elasticsearch</artifactId>
<version>2.2.0</version>
</dependency>
<!-- habse -->
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-client</artifactId>
<version>1.1.3</version>
<exclusions>
<exclusion>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
</exclusion>
</exclusions>
</dependency>
</dependencies>
2、Dao层
private Integer id;
private String title;
private String describe;
private String content;
private String author;
实现其getter/setter方法。
3、数据准备 在桌面新建一个doc1.txt文档,用于把我们需要查询的数据写入到里面,这里我只准备了5条数据。中间用tab键隔开。
4、在hbase中建立表。表名师doc,列族是cf。
public static void main(String[] args) throws Exception { HbaseUtils hbase = new HbaseUtils(); //创建一张表 hbase.createTable("doc","cf");}
/** * 创建一张表 * @param tableName* @param column* @throws Exception */public void createTable(String tableName, String column) throws Exception { if(admin.tableExists(TableName.valueOf(tableName))){ System.out.println(tableName+"表已经存在!"); }else{ HTableDescriptor tableDesc = new HTableDescriptor(TableName.valueOf(tableName)); tableDesc.addFamily(new HColumnDescriptor(column.getBytes())); admin.createTable(tableDesc); System.out.println(tableName+"表创建成功!"); }}
5、导入索引。这一步的时候确保你的hdfs和hbase以及elasticsearch是处于开启状态。
@Test
public void createIndex() throws Exception {
List<Doc> arrayList = new ArrayList<Doc>();
File file = new File("C:\\Users\\asus\\Desktop\\doc1.txt");
List<String> list = FileUtils.readLines(file,"UTF8");
for(String line : list){
Doc Doc = new Doc();
String[] split = line.split("\t");
System.out.print(split[0]);
int parseInt = Integer.parseInt(split[0].trim());
Doc.setId(parseInt);
Doc.setTitle(split[1]);
Doc.setAuthor(split[2]);
Doc.setDescribe(split[3]);
Doc.setContent(split[3]);
arrayList.add(Doc);
}
HbaseUtils hbaseUtils = new HbaseUtils();
for (Doc Doc : arrayList) {
try {
//把数据插入hbase
hbaseUtils.put(hbaseUtils.TABLE_NAME, Doc.getId()+"", hbaseUtils.COLUMNFAMILY_1, hbaseUtils.COLUMNFAMILY_1_TITLE, Doc.getTitle());
hbaseUtils.put(hbaseUtils.TABLE_NAME, Doc.getId()+"", hbaseUtils.COLUMNFAMILY_1, hbaseUtils.COLUMNFAMILY_1_AUTHOR, Doc.getAuthor());
hbaseUtils.put(hbaseUtils.TABLE_NAME, Doc.getId()+"", hbaseUtils.COLUMNFAMILY_1, hbaseUtils.COLUMNFAMILY_1_DESCRIBE, Doc.getDescribe());
hbaseUtils.put(hbaseUtils.TABLE_NAME, Doc.getId()+"", hbaseUtils.COLUMNFAMILY_1, hbaseUtils.COLUMNFAMILY_1_CONTENT, Doc.getContent());
//把数据插入es
Esutil.addIndex("tfjt","doc", Doc);
} catch (Exception e) {
e.printStackTrace();
}
}
}
数据导入成功之后可以在服务器上通过命令查看一下:
curl -XGET http://node1:9200/tfjt/_search
7、搜索。 在这里新建了一个工具类Esutil.java,主要用于处理搜索的。注意,我们默认的elasticsearch是9200端口的,这里数据传输用的是9300,不要写成9200了,然后就是集群名字为tf,也就是前面配置的集群名。还有就是主机名node1-node3,这里不能写ip地址,如果是本地测试的话,你需要在你的window下面配置hosts文件。
public class Esutil {
public static Client client = null;
/**
* 获取客户端
* @return
*/
public static Client getClient() {
if(client!=null){
return client;
}
Settings settings = Settings.settingsBuilder().put("cluster.name", "tf").build();
try {
client = TransportClient.builder().settings(settings).build()
.addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName("node1"), 9300))
.addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName("node2"), 9300))
.addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName("node3"), 9300));
} catch (UnknownHostException e) {
e.printStackTrace();
}
return client;
}
public static String addIndex(String index,String type,Doc Doc){
HashMap<String, Object> hashMap = new HashMap<String, Object>();
hashMap.put("id", Doc.getId());
hashMap.put("title", Doc.getTitle());
hashMap.put("describe", Doc.getDescribe());
hashMap.put("author", Doc.getAuthor());
IndexResponse response = getClient().prepareIndex(index, type).setSource(hashMap).execute().actionGet();
return response.getId();
}
public static Map<String, Object> search(String key,String index,String type,int start,int row){
SearchRequestBuilder builder = getClient().prepareSearch(index);
builder.setTypes(type);
builder.setFrom(start);
builder.setSize(row);
//设置高亮字段名称
builder.addHighlightedField("title");
builder.addHighlightedField("describe");
//设置高亮前缀
builder.setHighlighterPreTags("<font color='red' >");
//设置高亮后缀
builder.setHighlighterPostTags("</font>");
builder.setSearchType(SearchType.DFS_QUERY_THEN_FETCH);
if(StringUtils.isNotBlank(key)){
// builder.setQuery(QueryBuilders.termQuery("title",key));
builder.setQuery(QueryBuilders.multiMatchQuery(key, "title","describe"));
}
builder.setExplain(true);
SearchResponse searchResponse = builder.get();
SearchHits hits = searchResponse.getHits();
long total = hits.getTotalHits();
Map<String, Object> map = new HashMap<String,Object>();
SearchHit[] hits2 = hits.getHits();
map.put("count", total);
List<Map<String, Object>> list = new ArrayList<Map<String, Object>>();
for (SearchHit searchHit : hits2) {
Map<String, HighlightField> highlightFields = searchHit.getHighlightFields();
HighlightField highlightField = highlightFields.get("title");
Map<String, Object> source = searchHit.getSource();
if(highlightField!=null){
Text[] fragments = highlightField.fragments();
String name = "";
for (Text text : fragments) {
name+=text;
}
source.put("title", name);
}
HighlightField highlightField2 = highlightFields.get("describe");
if(highlightField2!=null){
Text[] fragments = highlightField2.fragments();
String describe = "";
for (Text text : fragments) {
describe+=text;
}
source.put("describe", describe);
}
list.add(source);
}
map.put("dataList", list);
return map;
}
// public static void main(String[] args) {
// Map<String, Object> search = Esutil.search("hbase", "tfjt", "doc", 0, 10);
// List<Map<String, Object>> list = (List<Map<String, Object>>) search.get("dataList");
// }
}
8、使用spring控制层处理 在里面的spring配置这里就不说了,代码文末提供。
@RequestMapping("/search.do")
public String serachArticle(Model model,
@RequestParam(value="keyWords",required = false) String keyWords,
@RequestParam(value = "pageNum", defaultValue = "1") Integer pageNum,
@RequestParam(value = "pageSize", defaultValue = "3") Integer pageSize){
try {
keyWords = new String(keyWords.getBytes("ISO-8859-1"),"UTF-8");
} catch (UnsupportedEncodingException e) {
e.printStackTrace();
}
Map<String,Object> map = new HashMap<String, Object>();
int count = 0;
try {
map = Esutil.search(keyWords,"tfjt","doc",(pageNum-1)*pageSize, pageSize);
count = Integer.parseInt(((Long) map.get("count")).toString());
} catch (Exception e) {
logger.error("查询索引错误!{}",e);
e.printStackTrace();
}
PageUtil<Map<String, Object>> page = new PageUtil<Map<String, Object>>(String.valueOf(pageNum),String.valueOf(pageSize),count);
List<Map<String, Object>> articleList = (List<Map<String, Object>>)map.get("dataList");
page.setList(articleList);
model.addAttribute("total",count);
model.addAttribute("pageNum",pageNum);
model.addAttribute("page",page);
model.addAttribute("kw",keyWords);
return "index.jsp";
}
9、页面
<center>
<form action="search.do" method="get">
<input type="text" name="keyWords" />
<input type="submit" value="百度一下">
<input type="hidden" value="1" name="pageNum">
</form>
<c:if test="${! empty page.list }">
<h3>百度为您找到相关结果约${total}个</h3>
<c:forEach items="${page.list}" var="bean">
<a href="/es/detailDocById/${bean.id}.do">${bean.title}</a>
<br/>
<br/>
<span>${bean.describe}</span>
<br/>
<br/>
</c:forEach>
<c:if test="${page.hasPrevious }">
<a href="search.do?pageNum=${page.previousPageNum }&keyWords=${kw}"> 上一页</a>
</c:if>
<c:forEach begin="${page.everyPageStart }" end="${page.everyPageEnd }" var="n">
<a href="search.do?pageNum=${n }&keyWords=${kw}"> ${n }</a>
</c:forEach>
<c:if test="${page.hasNext }">
<a href="search.do?pageNum=${page.nextPageNum }&keyWords=${kw}"> 下一页</a>
</c:if>
</c:if>
</center>
10、项目发布在IntelliJ IDEA 中配置好常用的项目,这里发布名Application context名字为es,当然你也可以自定义设置。
最终效果如下:搜索COS会得到结果,速度非常快。
总结:这个案例的操作流程还是挺多的,要有细心和耐心,特别是服务器配置,各种版本要匹配好,不然会出各种头疼的问题,当然了,这个还是需要有一定基础,不然搞不定这个事情。。。。。
源码地址:https://github.com/sdksdk0/es
|
|