简介图像风格迁移是指,将一幅内容图的内容,和一幅或多幅风格图的风格融合在一起,从而生成一些有意思的图片
以下是将一些艺术作品的风格,迁移到一张内容图之后的效果
我们使用TensorFlow和Keras分别来实现图像风格迁移,主要用到深度学习中的卷积神经网络,即CNN
准备安装包
pip install numpy scipy tensorflow keras复制代码再准备一些风格图片,和一张内容图片
原理为了将风格图的风格和内容图的内容进行融合,所生成的图片,在内容上应当尽可能接近内容图,在风格上应当尽可能接近风格图
因此需要定义内容损失函数和风格损失函数,经过加权后作为总的损失函数
实现步骤如下
- 随机产生一张图片
- 在每轮迭代中,根据总的损失函数,调整图片的像素值
- 经过多轮迭代,得到优化后的图片
内容损失函数两张图片在内容上相似,不能仅仅靠简单的纯像素比较
CNN具有抽象和理解图像的能力,因此可以考虑将各个卷积层的输出作为图像的内容
以VGG19为例,其中包括了多个卷积层、池化层,以及最后的全连接层
这里我们使用conv4_2的输出作为图像的内容表示,定义内容损失函数如下
风格损失函数风格是一个很难说清楚的概念,可能是笔触、纹理、结构、布局、用色等等
这里我们使用卷积层各个特征图之间的互相关作为图像的风格,以conv1_1为例
- 共包含64个特征图即feature map,或者说图像的深度、通道的个数
- 每个特征图都是对上一层输出的一种理解,可以类比成64个人对同一幅画的不同理解
- 这些人可能分别偏好印象派、现代主义、超现实主义、表现主义等不同风格
- 当图像是某一种风格时,可能这一部分人很欣赏,但那一部分人不喜欢
- 当图像是另一种风格时,可能这一部分人不喜欢,但那一部分人很欣赏
- 64个人之间理解的差异,可以用特征图的互相关表示,这里使用Gram矩阵计算互相关
- 不同的风格会导致差异化的互相关结果
Gram矩阵的计算如下,如果有64个特征图,那么Gram矩阵的大小便是64*64,第i行第j列的值表示第i个特征图和第j个特征图之间的互相关,用内积计算
风格损失函数定义如下,对多个卷积层的风格表示差异进行加权
这里我们使用conv1_1、conv2_1、conv3_1、conv4_1、conv5_1五个卷积层,进行风格损失函数的计算,不同的权重会导致不同的迁移效果
总的损失函数总的损失函数即内容损失函数和风格损失函数的加权,不同的权重会导致不同的迁移效果
TensorFlow实现加载库
# -*- coding: utf-8 -*-import tensorflow as tfimport numpy as npimport scipy.ioimport scipy.miscimport osimport timedef the_current_time(): print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(int(time.time()))))复制代码定义一些变量
CONTENT_IMG = 'content.jpg'STYLE_IMG = 'style5.jpg'OUTPUT_DIR = 'neural_style_transfer_tensorflow/'if not os.path.exists(OUTPUT_DIR): os.mkdir(OUTPUT_DIR)IMAGE_W = 800IMAGE_H = 600COLOR_C = 3NOISE_RATIO = 0.7BETA = 5ALPHA = 100VGG_MODEL = 'imagenet-vgg-verydeep-19.mat'MEAN_VALUES = np.array([123.68, 116.779, 103.939]).reshape((1, 1, 1, 3))复制代码加载VGG19模型
def load_vgg_model(path): ''' Details of the VGG19 model: - 0 is conv1_1 (3, 3, 3, 64) - 1 is relu - 2 is conv1_2 (3, 3, 64, 64) - 3 is relu - 4 is maxpool - 5 is conv2_1 (3, 3, 64, 128) - 6 is relu - 7 is conv2_2 (3, 3, 128, 128) - 8 is relu - 9 is maxpool - 10 is conv3_1 (3, 3, 128, 256) - 11 is relu - 12 is conv3_2 (3, 3, 256, 256) - 13 is relu - 14 is conv3_3 (3, 3, 256, 256) - 15 is relu - 16 is conv3_4 (3, 3, 256, 256) - 17 is relu - 18 is maxpool - 19 is conv4_1 (3, 3, 256, 512) - 20 is relu - 21 is conv4_2 (3, 3, 512, 512) - 22 is relu - 23 is conv4_3 (3, 3, 512, 512) - 24 is relu - 25 is conv4_4 (3, 3, 512, 512) - 26 is relu - 27 is maxpool - 28 is conv5_1 (3, 3, 512, 512) - 29 is relu - 30 is conv5_2 (3, 3, 512, 512) - 31 is relu - 32 is conv5_3 (3, 3, 512, 512) - 33 is relu - 34 is conv5_4 (3, 3, 512, 512) - 35 is relu - 36 is maxpool - 37 is fullyconnected (7, 7, 512, 4096) - 38 is relu - 39 is fullyconnected (1, 1, 4096, 4096) - 40 is relu - 41 is fullyconnected (1, 1, 4096, 1000) - 42 is softmax ''' vgg = scipy.io.loadmat(path) vgg_layers = vgg['layers'] def _weights(layer, expected_layer_name): W = vgg_layers[0][layer][0][0][2][0][0] b = vgg_layers[0][layer][0][0][2][0][1] layer_name = vgg_layers[0][layer][0][0][0][0] assert layer_name == expected_layer_name return W, b def _conv2d_relu(prev_layer, layer, layer_name): W, b = _weights(layer, layer_name) W = tf.constant(W) b = tf.constant(np.reshape(b, (b.size))) return tf.nn.relu(tf.nn.conv2d(prev_layer, filter=W, strides=[1, 1, 1, 1], padding='SAME') + b) def _avgpool(prev_layer): return tf.nn.avg_pool(prev_layer, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') graph = {} graph['input'] = tf.Variable(np.zeros((1, IMAGE_H, IMAGE_W, COLOR_C)), dtype='float32') graph['conv1_1'] = _conv2d_relu(graph['input'], 0, 'conv1_1') graph['conv1_2'] = _conv2d_relu(graph['conv1_1'], 2, 'conv1_2') graph['avgpool1'] = _avgpool(graph['conv1_2']) graph['conv2_1'] = _conv2d_relu(graph['avgpool1'], 5, 'conv2_1') graph['conv2_2'] = _conv2d_relu(graph['conv2_1'], 7, 'conv2_2') graph['avgpool2'] = _avgpool(graph['conv2_2']) graph['conv3_1'] = _conv2d_relu(graph['avgpool2'], 10, 'conv3_1') graph['conv3_2'] = _conv2d_relu(graph['conv3_1'], 12, 'conv3_2') graph['conv3_3'] = _conv2d_relu(graph['conv3_2'], 14, 'conv3_3') graph['conv3_4'] = _conv2d_relu(graph['conv3_3'], 16, 'conv3_4') graph['avgpool3'] = _avgpool(graph['conv3_4']) graph['conv4_1'] = _conv2d_relu(graph['avgpool3'], 19, 'conv4_1') graph['conv4_2'] = _conv2d_relu(graph['conv4_1'], 21, 'conv4_2') graph['conv4_3'] = _conv2d_relu(graph['conv4_2'], 23, 'conv4_3') graph['conv4_4'] = _conv2d_relu(graph['conv4_3'], 25, 'conv4_4') graph['avgpool4'] = _avgpool(graph['conv4_4']) graph['conv5_1'] = _conv2d_relu(graph['avgpool4'], 28, 'conv5_1') graph['conv5_2'] = _conv2d_relu(graph['conv5_1'], 30, 'conv5_2') graph['conv5_3'] = _conv2d_relu(graph['conv5_2'], 32, 'conv5_3') graph['conv5_4'] = _conv2d_relu(graph['conv5_3'], 34, 'conv5_4') graph['avgpool5'] = _avgpool(graph['conv5_4']) return graph复制代码内容损失函数
def content_loss_func(sess, model): def _content_loss(p, x): N = p.shape[3] M = p.shape[1] * p.shape[2] return (1 / (4 * N * M)) * tf.reduce_sum(tf.pow(x - p, 2)) return _content_loss(sess.run(model['conv4_2']), model['conv4_2'])复制代码风格损失函数
STYLE_LAYERS = [('conv1_1', 0.5), ('conv2_1', 1.0), ('conv3_1', 1.5), ('conv4_1', 3.0), ('conv5_1', 4.0)]def style_loss_func(sess, model): def _gram_matrix(F, N, M): Ft = tf.reshape(F, (M, N)) return tf.matmul(tf.transpose(Ft), Ft) def _style_loss(a, x): N = a.shape[3] M = a.shape[1] * a.shape[2] A = _gram_matrix(a, N, M) G = _gram_matrix(x, N, M) return (1 / (4 * N ** 2 * M ** 2)) * tf.reduce_sum(tf.pow(G - A, 2)) return sum([_style_loss(sess.run(model[layer_name]), model[layer_name]) * w for layer_name, w in STYLE_LAYERS])复制代码随机产生一张初始图片
def generate_noise_image(content_image, noise_ratio=NOISE_RATIO): noise_image = np.random.uniform(-20, 20, (1, IMAGE_H, IMAGE_W, COLOR_C)).astype('float32') input_image = noise_image * noise_ratio + content_image * (1 - noise_ratio) return input_image复制代码加载图片
def load_image(path): image = scipy.misc.imread(path) image = scipy.misc.imresize(image, (IMAGE_H, IMAGE_W)) image = np.reshape(image, ((1, ) + image.shape)) image = image - MEAN_VALUES return image复制代码保存图片
def save_image(path, image): image = image + MEAN_VALUES image = image[0] image = np.clip(image, 0, 255).astype('uint8') scipy.misc.imsave(path, image)复制代码调用以上函数并训练模型
the_current_time()with tf.Session() as sess: content_image = load_image(CONTENT_IMG) style_image = load_image(STYLE_IMG) model = load_vgg_model(VGG_MODEL) input_image = generate_noise_image(content_image) sess.run(tf.global_variables_initializer()) sess.run(model['input'].assign(content_image)) content_loss = content_loss_func(sess, model) sess.run(model['input'].assign(style_image)) style_loss = style_loss_func(sess, model) total_loss = BETA * content_loss + ALPHA * style_loss optimizer = tf.train.AdamOptimizer(2.0) train = optimizer.minimize(total_loss) sess.run(tf.global_variables_initializer()) sess.run(model['input'].assign(input_image)) ITERATIONS = 2000 for i in range(ITERATIONS): sess.run(train) if i % 100 == 0: output_image = sess.run(model['input']) the_current_time() print('Iteration %d' % i) print('Cost: ', sess.run(total_loss)) save_image(os.path.join(OUTPUT_DIR, 'output_%d.jpg' % i), output_image)复制代码在GPU上跑,花了5分钟左右,2000轮迭代后是这个样子
对比原图
Keras实现Keras官方提供了图像风格迁移的例子
github.com/fchollet/ke…
代码里引入了一个total variation loss,翻译为全变差正则,据说可以让生成的图像更平滑
- Keras相对TensorFlow封装更高,所以实现已有的模块更方便,但需要造轮子时较麻烦
- 增加了全变差正则,以生成的图像作为参数
- 使用conv5_2计算内容损失
- 将内容图作为一开始的结果,即不使用随机产生的图片
代码使用方法如下
python neural_style_transfer.py path_to_your_base_image.jpg path_to_your_reference.jpg prefix_for_results复制代码- --iter:迭代次数,默认为10
- --content_weight:内容损失权重,默认为0.025
- --style_weight:风格损失权重,默认为1.0
- --tv_weight:全变差正则权重,默认为1.0
新建文件夹neural_style_transfer_keras
python main_keras.py content.jpg style5.jpg neural_style_transfer_keras/output复制代码生成的图片长这样,10次迭代,花了1分钟左右
参考
链接:https://juejin.im/post/5ba255fd6fb9a05d3c7ff06d
|
|