本帖最后由 不二晨 于 2018-10-23 09:02 编辑
概述
hdfs中的文件是以块的形式存储的,每个块默认有三个副本,这些副本又存放在不同的datandoe上,读取文件的过程,就是先获取这些块的地址,然后依次读取各个快的数据
hdfs读写数据通过DataXceiverServer提供一个服务,建立java的socket服务,接受来自客户端的各种请求,每种请求会有不同的操作码,服务端通过这个操作码来判断是哪种请求。每次来一个请求,就新建一个线程来具体处理逻辑,具体的实现我们下面做一些简单的分析
DataXceiverServer介绍
了解DataXceiverServer
DataXceiverServer类位于org.apache.hadoop.hdfs.server.datanode包下,
/**
* Server used for receiving/sending a block of data.
* This is created to listen for requests from clients or
* other DataNodes. This small server does not use the
* Hadoop IPC mechanism.
*/
class DataXceiverServer implements Runnable {
/*
*PeerServer是一个接口,在datanode启动的时候初始化了他的一个实 *现类TcpPeerServer,TcpPeerServer类封装了Java的*ServerSocket功能.通过java的socket功能来提供服务,监听请求,处理请求
*
*/
private final PeerServer peerServer;
//所属datanode
private final DataNode datanode;
private final HashMap<Peer, Thread> peers = new HashMap<Peer, Thread>();
private final HashMap<Peer, DataXceiver> peersXceiver = new HashMap<Peer, DataXceiver>();
private boolean closed = false;
/**
* 如名字所示,最大的Xceiver的数量
* Maximal number of concurrent xceivers per node.
* Enforcing the limit is required in order to avoid data-node
* running out of memory.
*/
int maxXceiverCount =
DFSConfigKeys.DFS_DATANODE_MAX_RECEIVER_THREADS_DEFAULT;
}
从注释中了解到DataXceiverServer用于接受和发送数据块,监听客户端和其他的datanode的请求。
初始化工作
既然DataXceiverServer是用来接受和发送数据的,那么就应该是datanode工作的一部分,我们从datanode的初始化的代码中找到了DataXceiverServer的初始化代码.
在datanode的startDataNode方法中,通过 initDataXceiver(conf);来初始化DataXceiverServer,我们进入initDataXceiver方法.
private void initDataXceiver(Configuration conf) throws IOException {
// find free port or use privileged port provided
TcpPeerServer tcpPeerServer;
if (secureResources != null) {
tcpPeerServer = new TcpPeerServer(secureResources);
} else {
int backlogLength = conf.getInt(
CommonConfigurationKeysPublic.IPC_SERVER_LISTEN_QUEUE_SIZE_KEY,
CommonConfigurationKeysPublic.IPC_SERVER_LISTEN_QUEUE_SIZE_DEFAULT);
tcpPeerServer = new TcpPeerServer(dnConf.socketWriteTimeout,
DataNode.getStreamingAddr(conf), backlogLength);
}
tcpPeerServer.setReceiveBufferSize(HdfsConstants.DEFAULT_DATA_SOCKET_SIZE);
streamingAddr = tcpPeerServer.getStreamingAddr();
LOG.info("Opened streaming server at " + streamingAddr);
this.threadGroup = new ThreadGroup("dataXceiverServer");
xserver = new DataXceiverServer(tcpPeerServer, conf, this);
this.dataXceiverServer = new Daemon(threadGroup, xserver);
this.threadGroup.setDaemon(true); // auto destroy when empty
if (conf.getBoolean(DFSConfigKeys.DFS_CLIENT_READ_SHORTCIRCUIT_KEY,
DFSConfigKeys.DFS_CLIENT_READ_SHORTCIRCUIT_DEFAULT) ||
conf.getBoolean(DFSConfigKeys.DFS_CLIENT_DOMAIN_SOCKET_DATA_TRAFFIC,
DFSConfigKeys.DFS_CLIENT_DOMAIN_SOCKET_DATA_TRAFFIC_DEFAULT)) {
DomainPeerServer domainPeerServer =
getDomainPeerServer(conf, streamingAddr.getPort());
if (domainPeerServer != null) {
this.localDataXceiverServer = new Daemon(threadGroup,
new DataXceiverServer(domainPeerServer, conf, this));
LOG.info("Listening on UNIX domain socket: " +
domainPeerServer.getBindPath());
}
}
this.shortCircuitRegistry = new ShortCircuitRegistry(conf);
}
通过代码,我们看到首先new 了一个PeerServer的子类TcpPeerServer.
然后通过这个peerServer和相应的conf作为参数new了一个DataXceiverServer对象,并且将其加入了一个线程组,设置成守护线程.
这里涉及到了两个重要的概念,一个是线程组,一个是守护线程.在java中可以对线程组中的线程进行操作,比如interrupt操作可以打断一个线程组内的所有的线程,设置成守护线程,这样可以在主线程退出的情况下然所有的守护线程自动退出.
工作原理
我们来看DataXceiverServer的run方法
@Override
public void run() {
Peer peer = null;
while (datanode.shouldRun && !datanode.shutdownForUpgrade) {
try {
//通过accept方法在这里一直阻塞,直到有请求过来,我们通过跟踪代码,看到内部其实是封装了java的serverSocket的accept方法.
peer = peerServer.accept();
// Make sure the xceiver count is not exceeded
int curXceiverCount = datanode.getXceiverCount();
if (curXceiverCount > maxXceiverCount) {
throw new IOException("Xceiver count " + curXceiverCount
+ " exceeds the limit of concurrent xcievers: "
+ maxXceiverCount);
}
//当有请求过来的时候,就通过DataXceiver.create创建了一个守护进程,并将其加到线程组里.
new Daemon(datanode.threadGroup,
DataXceiver.create(peer, datanode, this))
.start();
} catch (SocketTimeoutException ignored) {
...................
}
//省略了异常处理和关闭服务处理
...................
}
通过代码我们看到,每次来了一个请求,DataXceiverServer就创建一个守护进程DataXceiver去处理请求,每个datanode上能创建多少个DataXceiver,就是DataXceiverServer中的变量maxXceiverCount来控制的.
这个变量可以通过配置文件来配置,变量名是dfs.datanode.max.transfer.threads,默认数字是4096,这个可以根据datanode的运行情况和性能来进行配置,也是hdfs优化的一个重要参数.
DataXceiver介绍
Op类介绍
当发送和接受数据的服务DataXceiver创建之后,是通过Op类中的各个操作码来标识各种操作的,Op类具体路径是org.apache.hadoop.hdfs.protocol.datatransfer.Op,在这里定义了一些操作码,用于区分不同的操作,比如读、写、copy等。
public enum Op {
WRITE_BLOCK((byte)80),
READ_BLOCK((byte)81),
READ_METADATA((byte)82),
REPLACE_BLOCK((byte)83),
COPY_BLOCK((byte)84),
BLOCK_CHECKSUM((byte)85),
TRANSFER_BLOCK((byte)86),
REQUEST_SHORT_CIRCUIT_FDS((byte)87),
RELEASE_SHORT_CIRCUIT_FDS((byte)88),
REQUEST_SHORT_CIRCUIT_SHM((byte)89);
.........................
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
处理逻辑
既然DataXceiver是一个线程,那么他的处理逻辑就应该在run方法里,我们来看run方法
/**
* Read/write data from/to the DataXceiverServer.
*/
@Override
public void run() {
int opsProcessed = 0;
Op op = null;
try {
dataXceiverServer.addPeer(peer, Thread.currentThread(), this);
peer.setWriteTimeout(datanode.getDnConf().socketWriteTimeout);
InputStream input = socketIn;
try {
IOStreamPair saslStreams = datanode.saslServer.receive(peer, socketOut,
socketIn, datanode.getXferAddress().getPort(),
datanode.getDatanodeId());
input = new BufferedInputStream(saslStreams.in,
HdfsConstants.SMALL_BUFFER_SIZE);
socketOut = saslStreams.out;
} catch (InvalidMagicNumberException imne) {
if (imne.isHandshake4Encryption()) {
LOG.info("Failed to read expected encryption handshake from client " +
"at " + peer.getRemoteAddressString() + ". Perhaps the client " +
"is running an older version of Hadoop which does not support " +
"encryption");
} else {
LOG.info("Failed to read expected SASL data transfer protection " +
"handshake from client at " + peer.getRemoteAddressString() +
". Perhaps the client is running an older version of Hadoop " +
"which does not support SASL data transfer protection");
}
return;
}
super.initialize(new DataInputStream(input));
// We process requests in a loop, and stay around for a short timeout.
// This optimistic behaviour allows the other end to reuse connections.
// Setting keepalive timeout to 0 disable this behavior.
do {
updateCurrentThreadName("Waiting for operation #" + (opsProcessed + 1));
try {
if (opsProcessed != 0) {
assert dnConf.socketKeepaliveTimeout > 0;
peer.setReadTimeout(dnConf.socketKeepaliveTimeout);
} else {
peer.setReadTimeout(dnConf.socketTimeout);
}
op = readOp();
} catch (InterruptedIOException ignored) {
// Time out while we wait for client rpc
break;
} catch (IOException err) {
// Since we optimistically expect the next op, it's quite normal to get EOF here.
if (opsProcessed > 0 &&
(err instanceof EOFException || err instanceof ClosedChannelException)) {
if (LOG.isDebugEnabled()) {
LOG.debug("Cached " + peer + " closing after " + opsProcessed + " ops");
}
} else {
incrDatanodeNetworkErrors();
throw err;
}
break;
}
// restore normal timeout
if (opsProcessed != 0) {
peer.setReadTimeout(dnConf.socketTimeout);
}
opStartTime = monotonicNow();
processOp(op);
++opsProcessed;
} while ((peer != null) &&
(!peer.isClosed() && dnConf.socketKeepaliveTimeout > 0));
} catch (Throwable t) {
........................
} finally {
if (LOG.isDebugEnabled()) {
LOG.debug(datanode.getDisplayName() + ":Number of active connections is: "
+ datanode.getXceiverCount());
}
updateCurrentThreadName("Cleaning up");
if (peer != null) {
dataXceiverServer.closePeer(peer);
IOUtils.closeStream(in);
}
}
}
通过 op = readOp();获取具体是什么操作,读、写、copy等,然后processOp(op);方法来处理具体的逻辑
在方法中,通过switch来具体的分发,让不同的方法执行不同的逻辑
/** Process op by the corresponding method. */
protected final void processOp(Op op) throws IOException {
switch(op) {
case READ_BLOCK:
opReadBlock();
break;
case WRITE_BLOCK:
opWriteBlock(in);
break;
case REPLACE_BLOCK:
opReplaceBlock(in);
break;
case COPY_BLOCK:
opCopyBlock(in);
break;
case BLOCK_CHECKSUM:
opBlockChecksum(in);
break;
case TRANSFER_BLOCK:
opTransferBlock(in);
break;
case REQUEST_SHORT_CIRCUIT_FDS:
opRequestShortCircuitFds(in);
break;
case RELEASE_SHORT_CIRCUIT_FDS:
opReleaseShortCircuitFds(in);
break;
case REQUEST_SHORT_CIRCUIT_SHM:
opRequestShortCircuitShm(in);
break;
default:
throw new IOException("Unknown op " + op + " in data stream");
}
}
跟踪代码,最后还是调用了DataXceiver类里面的readBlock方法来做具体的读取数据的操作
@Override
public void readBlock(final ExtendedBlock block,
final Token<BlockTokenIdentifier> blockToken,
final String clientName,
final long blockOffset,
final long length,
final boolean sendChecksum,
final CachingStrategy cachingStrategy) throws IOException {
previousOpClientName = clientName;
long read = 0;
updateCurrentThreadName("Sending block " + block);
OutputStream baseStream = getOutputStream();
DataOutputStream out = getBufferedOutputStream();
checkAccess(out, true, block, blockToken,
Op.READ_BLOCK, BlockTokenSecretManager.AccessMode.READ);
// send the block
BlockSender blockSender = null;
..............................
try {
try {
blockSender = new BlockSender(block, blockOffset, length,
true, false, sendChecksum, datanode, clientTraceFmt,
cachingStrategy);
} catch(IOException e) {
String msg = "opReadBlock " + block + " received exception " + e;
LOG.info(msg);
sendResponse(ERROR, msg);
throw e;
}
// send op status
writeSuccessWithChecksumInfo(blockSender, new DataOutputStream(getOutputStream()));
long beginRead = Time.monotonicNow();
read = blockSender.sendBlock(out, baseStream, null); // send data
.................................
} catch ( SocketException ignored ) {
.................................
} finally {
IOUtils.closeStream(blockSender);
}
}
主要就是构造了一个BlockSender对象,通过其sendBlock方法来将数据发送到客户端
BlockSender 读取数据
传统方式实现数据传输
传统方式读取数据,首先内核读出全盘数据,然后将数据跨越内核用户推到应用程序,然后应用程序再次跨越内核用户将数据推回,写出到套接字。应用程序实际上在这里担当了一个不怎么高效的中介角色,将磁盘文件的数据转入套接字
零拷贝实现数据传输
原理
Java 类库通过 java.nio.channels.FileChannel 中的 transferTo() 方法来在 Linux 和 UNIX 系统上支持零拷贝。可以使用 transferTo() 方法直接将字节从它被调用的通道上传输到另外一个可写字节通道上,数据无需流经应用程序
具体操作
BlockSender的doSendBlock方法中,通过以下的操作来判断是否可以进行transferTo操作。
boolean transferTo = transferToAllowed && !verifyChecksum
&& baseStream instanceof SocketOutputStream
&& blockIn instanceof FileInputStream;
在经过一系列的检查之后,在sendPacket方法进行具体的操作
if (transferTo) {
SocketOutputStream sockOut = (SocketOutputStream)out;
// First write header and checksums
sockOut.write(buf, headerOff, dataOff - headerOff);
// no need to flush since we know out is not a buffered stream
FileChannel fileCh = ((FileInputStream)blockIn).getChannel();
LongWritable waitTime = new LongWritable();
LongWritable transferTime = new LongWritable();
sockOut.transferToFully(fileCh, blockInPosition, dataLen,
waitTime, transferTime);
datanode.metrics.addSendDataPacketBlockedOnNetworkNanos(waitTime.get());
datanode.metrics.addSendDataPacketTransferNanos(transferTime.get());
blockInPosition += dataLen;
} else {
// normal transfer
out.write(buf, headerOff, dataOff + dataLen - headerOff);
}
其中sockOut.transferToFully(fileCh, blockInPosition, dataLen,
waitTime, transferTime);封装了具体的java底层的操作
客户端读数据流程分析
通过前面的代码我们知道datanode在启动的时候启动了java的socket来监听请求,那么客户端的请求是怎么发送的呢?这个就是接下来我们要研究的问题.
java api读取数据
我们先来一段简单的java api读取hdfs数据的代码
@Test
public void testRead() {
try {
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(conf);
Path p = new Path("hdfs://localhost:9000/a.txt");
FSDataInputStream in = fs.open(p);
BufferedReader buff = new BufferedReader(new InputStreamReader(in));
String str = null;
while ((str = buff.readLine()) != null) {
System.out.println(str);
}
buff.close();
in.close();
} catch (IllegalArgumentException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}
首先通过FileSystem fs = FileSystem.get(conf);来实例化FileSystem的子类,也就是分布式文件系统DistributedFileSystem。(具体是通过传进来的conf里面路径的前缀的配置来决定实例化哪个系统,如hdfs://,就是DistributedFileSystem,具体这里就不讲了)
然后通过 fs.open(p); 来打开一个输入流,用于读取数据
构造DFSInputStream
跟踪代码,我们打开DistributedFileSystem的open方法
@Override
public FSDataInputStream open(Path f, final int bufferSize)
throws IOException {
statistics.incrementReadOps(1);
Path absF = fixRelativePart(f);
return new FileSystemLinkResolver<FSDataInputStream>() {
@Override
public FSDataInputStream doCall(final Path p)
throws IOException, UnresolvedLinkException {
final DFSInputStream dfsis =
dfs.open(getPathName(p), bufferSize, verifyChecksum);
return dfs.createWrappedInputStream(dfsis);
}
@Override
public FSDataInputStream next(final FileSystem fs, final Path p)
throws IOException {
return fs.open(p, bufferSize);
}
}.resolve(this, absF);
}
DFSInputStream是分布式文件用于读数据的输入流,用它来对hdfs的文件进行读操作,通过DFSClient的open方法打开了一个DFSInputStream。
final DFSInputStream dfsis =
dfs.open(getPathName(p), bufferSize, verifyChecksum);
1
2
获取文件的块信息
在DFSClient的open方法中,new了一个DFSInputStream类,从namnode获取文件的块信息的主要方法是openInfo,我们来分析下。
内部的fetchLocatedBlocksAndGetLastBlockLength方法,我们从名字可以了解到,获取所有的块信息以及最后一个快的长度,获取最后一个块的长度主要是针对并发读写的情况,读数据的时候如果有其他线程在进行追加操作,最后的块的大小会有所改变。
跟踪代码,最后调用了org.apache.hadoop.hdfs.DFSClient.callGetBlockLocations(ClientProtocol, String, long, long)方法来通过namenode的代理来发请求,具体的是在ClientProtocol接口的实现类ClientNamenodeProtocolTranslatorPB的getBlockLocations方法中封装了请求的对象GetBlockLocationsRequestProto,通过hadoop rpc发送到namenode来获取数据
@Override
public LocatedBlocks getBlockLocations(String src, long offset, long length)
throws AccessControlException, FileNotFoundException,
UnresolvedLinkException, IOException {
GetBlockLocationsRequestProto req = GetBlockLocationsRequestProto
.newBuilder()
.setSrc(src)
.setOffset(offset)
.setLength(length)
.build();
try {
GetBlockLocationsResponseProto resp = rpcProxy.getBlockLocations(null,
req);
return resp.hasLocations() ?
PBHelper.convert(resp.getLocations()) : null;
} catch (ServiceException e) {
throw ProtobufHelper.getRemoteException(e);
}
}
具体的实现代码是在namenode的服务代理org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer的getBlockLocations方法实现。
@Override // ClientProtocol
public LocatedBlocks getBlockLocations(String src,
long offset,
long length)
throws IOException {
checkNNStartup();
metrics.incrGetBlockLocations();
return namesystem.getBlockLocations(getClientMachine(),
src, offset, length);
}
主要就是通过namesystem.getBlockLocations来从命名空间中获取相应的信息,主要就是先获取文件对应的INodeFile,然后再获取文件对应的块信息,返回的块的信息根据datanode距离客户端的距离做了简单的排序,具体的可以跟踪下代码
DFSInputStream read 数据
DFSInputStream的read方法进入readWithStrategy方法,然后进入blockSeekTo方法
接下来在org.apache.hadoop.hdfs.DFSInputStream.blockSeekTo(long) 方法,构造出来一个BlockReader对象,用于读取数据
/**
* 打开了一个输入流用于读取数据
* Open a DataInputStream to a DataNode so that it can be read from.
* We get block ID and the IDs of the destinations at startup, from the namenode.
*/
private synchronized DatanodeInfo blockSeekTo(long target) throws IOException {
..................................
blockReader = new BlockReaderFactory(dfsClient.getConf()).
setInetSocketAddress(targetAddr).
setRemotePeerFactory(dfsClient).
setDatanodeInfo(chosenNode).
setStorageType(storageType).
setFileName(src).
setBlock(blk).
setBlockToken(accessToken).
setStartOffset(offsetIntoBlock).
setVerifyChecksum(verifyChecksum).
setClientName(dfsClient.clientName).
setLength(blk.getNumBytes() - offsetIntoBlock).
setCachingStrategy(curCachingStrategy).
setAllowShortCircuitLocalReads(!shortCircuitForbidden).
setClientCacheContext(dfsClient.getClientContext()).
setUserGroupInformation(dfsClient.ugi).
setConfiguration(dfsClient.getConfiguration()).
build();
........................
}
跟踪build方法,在build方法的注释中,我们看到构造BlockReader的时候首先会尝试本地短路读建立BlockReaderLocal,如果短路读不可用,则建立UNIX domain sockets(unix域套接字),如果还是没有成功的话,建立TCP连接。
/**
*
* This function will do the best it can to create a block reader that meets
* all of our requirements. We prefer short-circuit block readers
* (BlockReaderLocal and BlockReaderLocalLegacy) over remote ones, since the
* former avoid the overhead of socket communication. If short-circuit is
* unavailable, our next fallback is data transfer over UNIX domain sockets,
* if dfs.client.domain.socket.data.traffic has been enabled. If that doesn't
* work, we will try to create a remote block reader that operates over TCP
* sockets.
................
public BlockReader build() throws IOException{
}
我们这里着重看下通过tcp方法建立的连接
调用了RemoteBlockReader2.newBlockReader来获取的BlockReader对象。
/**
* 打开了一个输入流用于读取数据
* Open a DataInputStream to a DataNode so that it can be read from.
* We get block ID and the IDs of the destinations at startup, from the namenode.
*/
private synchronized DatanodeInfo blockSeekTo(long target) throws IOException {
..................................
blockReader = new BlockReaderFactory(dfsClient.getConf()).
setInetSocketAddress(targetAddr).
setRemotePeerFactory(dfsClient).
setDatanodeInfo(chosenNode).
setStorageType(storageType).
setFileName(src).
setBlock(blk).
setBlockToken(accessToken).
setStartOffset(offsetIntoBlock).
setVerifyChecksum(verifyChecksum).
setClientName(dfsClient.clientName).
setLength(blk.getNumBytes() - offsetIntoBlock).
setCachingStrategy(curCachingStrategy).
setAllowShortCircuitLocalReads(!shortCircuitForbidden).
setClientCacheContext(dfsClient.getClientContext()).
setUserGroupInformation(dfsClient.ugi).
setConfiguration(dfsClient.getConfiguration()).
build();
........................
}
Sender发送数据
在org.apache.hadoop.hdfs.RemoteBlockReader2.newBlockReader方法中,通过Sender对象的readBlock来读取数据。
public static BlockReader newBlockReader(String file,
ExtendedBlock block,
Token<BlockTokenIdentifier> blockToken,
long startOffset, long len,
boolean verifyChecksum,
String clientName,
Peer peer, DatanodeID datanodeID,
PeerCache peerCache,
CachingStrategy cachingStrategy) throws IOException {
// in and out will be closed when sock is closed (by the caller)
final DataOutputStream out = new DataOutputStream(new BufferedOutputStream(
peer.getOutputStream()));
new Sender(out).readBlock(block, blockToken, clientName, startOffset, len,
verifyChecksum, cachingStrategy);
................................
}
readBlock方法中,通过发送值为81的状态码org.apache.hadoop.hdfs.protocol.datatransfer.Op.READ_BLOCK
到DataXceiver中的peer服务。
@Override
public void readBlock(final ExtendedBlock blk,
final Token<BlockTokenIdentifier> blockToken,
final String clientName,
final long blockOffset,
final long length,
final boolean sendChecksum,
final CachingStrategy cachingStrategy) throws IOException {
OpReadBlockProto proto = OpReadBlockProto.newBuilder()
.setHeader(DataTransferProtoUtil.buildClientHeader(blk, clientName, blockToken))
.setOffset(blockOffset)
.setLen(length)
.setSendChecksums(sendChecksum)
.setCachingStrategy(getCachingStrategy(cachingStrategy))
.build();
send(out, Op.READ_BLOCK, proto);
}
在这里我们看到把各个参数都set到了OpReadBlockProto对象里,然后发送出去,也就是发送到了初始化的DataXceiverServer服务.
这个时候服务端一直阻塞的socket线程将会收到操作码为81的读请求,然后就进行后续的处理
我们看下,其实其他的一些对于数据的操作,如copyBlock,writeBlock都是在Sender中完成的.
总结
至此,我们分析了hdfs读取数据的全部流程,包括服务端如何初始化、如何为每个过来的请求建立一个线程用于读取数据,如果利用零拷贝技术来减少开销,以及客户端如何发送读取数据的请求。
由于本人目前尚处在学习的阶段,难免有错误或者疏漏,如有问题,请大家多多指教。
---------------------
【转载】作者:随风逐流001
原文:https://blog.csdn.net/zhangjun5965/article/details/72586037
|
|