A股上市公司传智教育(股票代码 003032)旗下技术交流社区北京昌平校区

 找回密码
 加入黑马

QQ登录

只需一步,快速开始

对于很多算法工程师来说,超参数调优是件非常头疼的事,这项工作比较玄学。除了根据经验设定所谓的“合理值”之外,一般很难找到合理的方法去寻找超参数的最优值。而与此同时,超参数对于模型效果的影响又至关重要。那么有木有一些可行的办法进行超参数调优呢?

超参数调优的方法
为了进行超参数调优,我们一般会采用网格搜索、随机搜索以及贝叶斯等算法。在具体介绍算法之前,需要明确超参数搜索算法一般包括哪几个要素。一是目标函数,即算法需要最大化/最小化的目标;二是搜索范围,一般通过上限和下限来确定;三是算法的其它参数,如搜索步长等。

1. 网格搜索
网格搜索可能是最简单、应用最广泛的超参数搜索算法,它通过查找搜索范围内的所有的点来确定最优值。如果采用较大的搜索范围以及较小的步长,网格搜索有很大的概率找到全局最优值。然而,这种搜索方法十分消耗计算资源和时间,特别是需要调优的超参数比较多的时候。因此,在实际应用中,网格搜索法一般会先使用较广的搜索范围和较大的步长,来寻找全局最优值可能的位置;然后会逐渐缩小搜索范围和步长,来寻找更精确的最优值。这种操作方案可以降低所需的时间和计算量,但由于目标函数一般是非凸的,所以很可能会错过全局最优值。

2. 随机搜索
随机搜索的思想与网格搜索比较相似,只是不再测试上界和下界之间的所有值,而是在搜索范围中随机选取样本点。它的理论依据是,如果样本点集足够大,那么通过随机采样也能大概率地找到全局最优值或其近似值。随机搜索一般会比网格搜索要快一些,但是和网格搜索的快速版一样,它的结果也是没法保证的。

3. 贝叶斯优化算法
贝叶斯优化算法在寻找最优最值参数时,采用了与网格搜索、随机搜索完全不同的方法。网格搜索和随机搜索在测试一个新点时,会忽略前一个点的信息;而贝叶斯优化算法则充分利用了之前的信息。贝叶斯优化算法通过对目标函数形状进行学习,找到使目标函数向全局最优值提升的参数。具体来说,它学习目标函数形状的方法是,首先根据先验分布,假设一个搜索函数;然后,每一次使用新的采样点来测试目标函数时,利用这个信息来更新目标函数的先验分布;最后,算法测试由后验分布给出的全局最值最可能出现的位置的点。对于贝叶斯优化算法,有一个需要注意的地方,一旦找到一个局部最优值,它会在该区域不断采样,所以很容易陷入局部最优值。为了弥补这个缺陷,贝叶斯优化算法会在探索和利用之间找到一个平衡点,“探索”就是在还未取样的区域获取采样点;而“利用”则是根据后验分布在最可能出现全局最值的区域进行采样。
---------------------
作者:Never-Giveup
来源:CSDN
原文:https://blog.csdn.net/qq_36653505/article/details/82962074
版权声明:本文为博主原创文章,转载请附上博文链接!

1 个回复

倒序浏览
奈斯
回复 使用道具 举报
您需要登录后才可以回帖 登录 | 加入黑马