A股上市公司传智教育(股票代码 003032)旗下技术交流社区北京昌平校区

 找回密码
 加入黑马

QQ登录

只需一步,快速开始

爬取全国大学排名 用pyecharts进行可视化
先找到对应的全部list
需要先安装requests,lxml
可直接用 pip install requests pip install lxml 命令安装
导入需要的相关包
import requests
from lxml import etree
import time
import random
import csv

#避免网页反爬虫
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36'}               
url = 'http://college.gaokao.com/schlist/p'
response = requests.get(url,headers=headers)
time.sleep(random.randint(0,2))        #同样用于反爬虫
再调用 lxml 获取到整页的学校名称
selector = etree.HTML(response.text)
all_list = selector.xpath('//*[starts-with(@class,"scores_List")]/dl')        #页面中全部学校  全部dl列
调用 for 循环获取dl中所有需要的数据
for sel in all_list:
        name = sel.xpath('dt/strong/a/text()')[0]  #学校名称
        place = sel.xpath('dd/ul/li[1]/text()')[0][6:]        #高校所在地
        type = sel.xpath('dd/ul/li[3]/text()')[0][5:]        #高校类型
        nature = sel.xpath('dd/ul/li[5]/text()')[0][5:]        #高校性质
        try:        #获取的数据院校特色有地方空缺为避免出现空缺无法爬取数据
            tese = sel.xpath('dd/ul/li[2]/span/text()')[0]        #院校特色
        except:
            tese=''        #遇到空缺值让院校特色等于null
        lishu = sel.xpath('dd/ul/li[4]/text()')[0][5:]        #高校隶属
最后将爬取的数据保存(保存成CSV文件格式)
    with open('school.csv','a',encoding='gbk',newline='')as file:
        writer = csv.writer(file)
        try:
            writer.writerow(item)
        except Exception as e:
            print(e)
            
最后用函数将全部代码串接
附上完整代码
import requests
from lxml import etree
import time
import random
import csv

def csv_writer(item):
    with open('school.csv','a',encoding='gbk',newline='')as file:
        writer = csv.writer(file)
        try:
            writer.writerow(item)
        except Exception as e:
            print(e)
def spider(url_):
    time.sleep(random.randint(0,2))
    res = requests.get(url_,headers=headers)
    return etree.HTML(res.text)
def parse(list_url):
    selector = spider(list_url)
    all_list = selector.xpath('//*[starts-with(@class,"scores_List")]/dl')
    for sel in all_list:
        name = sel.xpath('dt/strong/a/text()')[0]
        place = sel.xpath('dd/ul/li[1]/text()')[0][6:]
        type = sel.xpath('dd/ul/li[3]/text()')[0][5:]
        nature = sel.xpath('dd/ul/li[5]/text()')[0][5:]
        try:
            tese = sel.xpath('dd/ul/li[2]/span/text()')[0]
        except:
            tese=''
        lishu = sel.xpath('dd/ul/li[4]/text()')[0][5:]
        # print(name,place,type,nature,tese,lishu)
        csv_writer([name,place,type,nature,tese,lishu])

headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36'}
url_ = 'http://college.gaokao.com/schlist/p'
all_url = [url_ + str(i) for i in range(1,107)]
for url in all_url:
    parse(url)
将爬取的文件进行整合并进行可视化
柱状图
from pyecharts.charts import Bar
from pyecharts import options as opts
import pandas as pd
datafile = r'D:/Program Files/Tencent/QQ/QQ/out2/school.xlsx'
data = pd.read_excel(datafile)

x1 = data['Column1'].tolist()
y1 = data['Column2'].tolist()
y2 = data['Column3'].tolist()
bar = (
    Bar()
    .add_xaxis(x1)
    .add_yaxis("本科",y1)
    .add_yaxis("专科",y2)
    .set_global_opts(title_opts=opts.TitleOpts(title="大学",subtitle="情况"))
)
bar.render(path='bar.html')
前十条形图
from pyecharts.charts import Line
import pandas as pd
from pyecharts import options as opts
datafile = r'D:/Program Files/Tencent/QQ/QQ/out2/school.xlsx'
data = pd.read_excel(datafile)
encoding='utf-8'
x1 = data['Column1'].tolist()[:10]
y1 = data['Column2'].tolist()[:10]
y2 = data['Column3'].tolist()[:10]
line = Line()
line.add_xaxis(x1)
line.add_yaxis("本科",y1)
line.add_yaxis("专科",y2)
line.set_global_opts(title_opts=opts.TitleOpts(title="前十"))
function(){ //外汇赠金活动 http://www.kaifx.cn/activity/
line.render(path='line.html')
高校数前十名 环形图
from pyecharts.charts import Pie
import pandas as pd
from pyecharts import options as opts
datafile = r'D:/Program Files/Tencent/QQ/QQ/out2/school.xlsx'
data = pd.read_excel(datafile)
# 高校数量前十名
pie = Pie()
pie.add("", [list(z) for z in zip(data['Column1'].values.tolist()[:10], data['Column2'].values.tolist()[:10])],
       radius=["30%", "75%"],
            center=["40%", "50%"],
            rosetype="radius")
pie.set_global_opts(
            title_opts=opts.TitleOpts(title="高校数量前十名"),
            legend_opts=opts.LegendOpts(
                type_="scroll", pos_left="80%", orient="vertical"
            ),
        )
pie.render('高校数量前十名.html')
散点图
import pyecharts.options as opts
from pyecharts.charts import Scatter
import pandas as pd
datafile = r'D:/Program Files/Tencent/QQ/QQ/out2/school.xlsx'
data = pd.read_excel(datafile)
x1 = data['Column1'].tolist()[:10]
y1 = data['Column2'].tolist()[:10]
y2 = data['Column3'].tolist()[:10]

scatter = Scatter()
scatter.add_xaxis(x1)
scatter.add_yaxis('本科',y1)
scatter.add_yaxis('专科',y2)
scatter.set_global_opts(title_opts=opts.TitleOpts(title="高校"))
scatter.render(path='scatter.html')
Geo
from pyecharts.charts import Geo
import pandas as pd
from pyecharts import options as opts
datafile = r'D:/Program Files/Tencent/QQ/QQ/out2/school.xlsx'
data = pd.read_excel(datafile)
geo = Geo()
geo.add_schema(maptype="china")
geo.add("高校分布图",[list(z) for z in zip(data['Column1'].values.tolist(), data['Column2'].values.tolist())])
geo.set_global_opts(visualmap_opts=opts.VisualMapOpts(is_piecewise=True,max_=150),
                    title_opts=opts.TitleOpts(title="各地区高校数量"))
geo.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
geo.render(path='geo.html')
Map
from pyecharts.charts import Map
import pandas as pd
from pyecharts import options as opts
datafile = r'D:/Program Files/Tencent/QQ/QQ/out2/school.xlsx'
data = pd.read_excel(datafile)
map = Map()
map.add("高校分布图",[list(z) for z in zip(data['Column1'].values.tolist(), data['Column2'].values.tolist())])
map.set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=150),
                    title_opts=opts.TitleOpts(title="各地区高校数量"))
map.render(path='map.html')

0 个回复

您需要登录后才可以回帖 登录 | 加入黑马