A股上市公司传智教育(股票代码 003032)旗下技术交流社区北京昌平校区

 找回密码
 加入黑马

QQ登录

只需一步,快速开始

该函数的功能是使用k近邻算法将每组数据划分到某个类中,其伪代码如下:

对未知类别属性的数据集中的每个点依次执行以下操作:

(1)计算已知类别数据集中的点与当前点之间的距离;

(2)按照距离递增次序排序;

(3)选取与当前点距离最小的k个点;

(4)确定前k个点所在类别的出现频率;

(5)返回前k个点出现频率最高的类别作为当前点的预测分类。

Python函数classi fy0 ()如程序清单2-1所示。




  • def classify0(inX,dataSet,labels,k):



  •     '''



  •     inX:用于分类的输入向量(带分类的向量)



  •     labels:训练集对应的标签向量



  •     K:最近邻居数量



  •     '''



  •     dataSetSize = dataSet.shape[0]#数据集数据的函数



  •     print(tile(inX,(dataSetSize,1)))



  •     diffMat = tile(inX,(dataSetSize,1)) - dataSet







  •     sqDiffMat = diffMat**2



  •     sqDistances=sqDiffMat.sum(axis=1)



  •     distances = sqDistances**(1/2)







  •     sortedDistIndicies = distances.argsort()



  •     classCount={}



  •     for i in range(k):



  •         voteIlabel = labels[sortedDistIndicies]



  •         classCount[voteIlabel]  = classCount.get(voteIlabel,0)+1







  •     sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)



  •     return sortedClassCount[0][0]



小结:

k-近邻算法是分类数据最简单最有效的算法,本章通过两个例子讲述了如何使用k近邻算法构造分类器。k-近邻算法是基于实例的学习,使用算法时我们必须有接近实际数据的训练样本数据。k-近邻算法必须保存全部数据集,如果训练数据集的很大,必须使用大量的存储空间。此外,由于必须对数据集中的每个数据计算距离值,实际使用时可能非常耗时。

k-近邻算法的另一个缺陷是它无法给出任何数据的基础结构信息,因此我们也无法知晓平均实例样本和典型实例样本具有什么特征。


1 个回复

正序浏览
奈斯
回复 使用道具 举报
您需要登录后才可以回帖 登录 | 加入黑马