A股上市公司传智教育(股票代码 003032)旗下技术交流社区北京昌平校区

 找回密码
 加入黑马

QQ登录

只需一步,快速开始

本节我们建立Softmax回归用于经典的MNIST图像识别数据集作为深度学习入门。主要是学习TensorFlow时作的笔记,大家可以参考官网,本系列增加了自己在学习过程中对于不理解的地方的学习笔记,希望能对大家有所帮助。



这里我们开始实现Softmax,数据集下载在http://yann.lecun.com/exdb/mnist/上,大家也可以自己下载处理。我们利用input_data导入数据(input_data代码在文末),建立模型,具体见注释,最终准确率93%左右。



  • # -*- coding: utf-8 -*-



  • """



  • Created on Sat Apr  1 09:35:59 2017







  • @author: chenbin



  • """







  • import input_data



  • mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)







  • import tensorflow as tf



  • x = tf.placeholder('float',[None,784])



  • """x不是一个特定的值,而是一个占位符placeholder,我们在TensorFlow运行计算时输入这个值。我们希望能够输入任意数量的MNIST图像,每一张图展平成784维的向量。我们用2维的浮点数张量来表示这些图,这个张量的形状是[None,784 ]。(这里的None表示此张量的第一个维度可以是任何长度的。)"""



  • W = tf.Variable(tf.zeros([784,10]))



  • b = tf.Variable(tf.zeros([10]))



  • """我们赋予tf.Variable不同的初值来创建不同的Variable:在这里,



  • 我们都用全为零的张量来初始化W和b。因为我们要学习W和b的值,它们的初值可以随意设置。"""







  • y = tf.nn.softmax(tf.matmul(x,W) + b) #matmul 矩阵相乘







  • y_ = tf.placeholder("float", [None,10]) #记录真实值







  • cross_entropy = -tf.reduce_sum(y_*tf.log(y))



  • #计算交叉熵,tf.redece_sum是求和







  • train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)



  • """我们要求TensorFlow用梯度下降算法(gradient descent algorithm)



  • 以0.01的学习速率最小化交叉熵。



  • """







  • init = tf.initialize_all_variables() #初始化变量







  • sess = tf.Session()



  • sess.run(init) #在一个Session里面启动我们的模型,并且初始化变量







  • #训练模型



  • for i in range(1000):



  •   batch_xs, batch_ys = mnist.train.next_batch(100)



  •   sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})



  • """



  • 该循环的每个步骤中,我们都会随机抓取训练数据中的100个批处理数据点,next_batch随机选



  • 然后我们用这些数据点作为参数替换之前的占位符来运行train_step。



  • """







  • #评估模型



  • correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))



  • """



  • tf.argmax 是一个非常有用的函数,它能给出某个tensor对象在某一维上的



  • 其数据最大值所在的索引值。由于标签向量是由0,1组成,因此最大值1所在的索引位置就是类别标签,



  • 比如tf.argmax(y,1)返回的是模型对于任一输入x预测到的标签值,



  • 而 tf.argmax(y_,1) 代表正确的标签,



  • 我们可以用 tf.equal 来检测我们的预测是否真实标签匹配(索引位置一样表示匹配)



  • """



  • #取平均值得到准确率



  • accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))



  • """将x或者x.values转换为dtype



  • tensor a is [1.8, 2.2], dtype=tf.float



  • tf.cast(a, tf.int32) ==> [1, 2] # dtype=tf.int32



  • """



  • print (sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))





input_data代码:



  • # ==============================================================================



  • """Functions for downloading and reading MNIST data."""



  • from __future__ import absolute_import



  • from __future__ import division



  • from __future__ import print_function



  • import gzip



  • import os



  • import numpy



  • from six.moves import urllib



  • from six.moves import xrange  # pylint: disable=redefined-builtin



  • SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'



  • def maybe_download(filename, work_directory):



  •   """Download the data from Yann's website, unless it's already here."""



  •   if not os.path.exists(work_directory):



  •     os.mkdir(work_directory)



  •   filepath = os.path.join(work_directory, filename)



  •   if not os.path.exists(filepath):



  •     filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)



  •     statinfo = os.stat(filepath)



  •     print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')



  •   return filepath



  • def _read32(bytestream):



  •   dt = numpy.dtype(numpy.uint32).newbyteorder('>')



  •   return numpy.frombuffer(bytestream.read(4), dtype=dt)



  • def extract_images(filename):



  •   """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""



  •   print('Extracting', filename)



  •   with gzip.open(filename) as bytestream:



  •     magic = _read32(bytestream)



  •     if magic != 2051:



  •       raise ValueError(



  •           'Invalid magic number %d in MNIST image file: %s' %



  •           (magic, filename))



  •     num_images = _read32(bytestream)



  •     rows = _read32(bytestream)



  •     cols = _read32(bytestream)



  •     buf = bytestream.read(rows * cols * num_images)



  •     data = numpy.frombuffer(buf, dtype=numpy.uint8)



  •     data = data.reshape(num_images, rows, cols, 1)



  •     return data



  • def dense_to_one_hot(labels_dense, num_classes=10):



  •   """Convert class labels from scalars to one-hot vectors."""



  •   num_labels = labels_dense.shape[0]



  •   index_offset = numpy.arange(num_labels) * num_classes



  •   labels_one_hot = numpy.zeros((num_labels, num_classes))



  •   labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1



  •   return labels_one_hot



  • def extract_labels(filename, one_hot=False):



  •   """Extract the labels into a 1D uint8 numpy array [index]."""



  •   print('Extracting', filename)



  •   with gzip.open(filename) as bytestream:



  •     magic = _read32(bytestream)



  •     if magic != 2049:



  •       raise ValueError(



  •           'Invalid magic number %d in MNIST label file: %s' %



  •           (magic, filename))



  •     num_items = _read32(bytestream)



  •     buf = bytestream.read(num_items)



  •     labels = numpy.frombuffer(buf, dtype=numpy.uint8)



  •     if one_hot:



  •       return dense_to_one_hot(labels)



  •     return labels



  • class DataSet(object):



  •   def __init__(self, images, labels, fake_data=False):



  •     if fake_data:



  •       self._num_examples = 10000



  •     else:



  •       assert images.shape[0] == labels.shape[0], (



  •           "images.shape: %s labels.shape: %s" % (images.shape,



  •                                                  labels.shape))



  •       self._num_examples = images.shape[0]



  •       # Convert shape from [num examples, rows, columns, depth]



  •       # to [num examples, rows*columns] (assuming depth == 1)



  •       assert images.shape[3] == 1



  •       images = images.reshape(images.shape[0],



  •                               images.shape[1] * images.shape[2])



  •       # Convert from [0, 255] -> [0.0, 1.0].



  •       images = images.astype(numpy.float32)



  •       images = numpy.multiply(images, 1.0 / 255.0)



  •     self._images = images



  •     self._labels = labels



  •     self._epochs_completed = 0



  •     self._index_in_epoch = 0



  •   @property



  •   def images(self):



  •     return self._images



  •   @property



  •   def labels(self):



  •     return self._labels



  •   @property



  •   def num_examples(self):



  •     return self._num_examples



  •   @property



  •   def epochs_completed(self):



  •     return self._epochs_completed



  •   def next_batch(self, batch_size, fake_data=False):



  •     """Return the next `batch_size` examples from this data set."""



  •     if fake_data:



  •       fake_image = [1.0 for _ in xrange(784)]



  •       fake_label = 0



  •       return [fake_image for _ in xrange(batch_size)], [



  •           fake_label for _ in xrange(batch_size)]



  •     start = self._index_in_epoch



  •     self._index_in_epoch += batch_size



  •     if self._index_in_epoch > self._num_examples:



  •       # Finished epoch



  •       self._epochs_completed += 1



  •       # Shuffle the data



  •       perm = numpy.arange(self._num_examples)



  •       numpy.random.shuffle(perm)



  •       self._images = self._images[perm]



  •       self._labels = self._labels[perm]



  •       # Start next epoch



  •       start = 0



  •       self._index_in_epoch = batch_size



  •       assert batch_size <= self._num_examples



  •     end = self._index_in_epoch



  •     return self._images[start:end], self._labels[start:end]



  • def read_data_sets(train_dir, fake_data=False, one_hot=False):



  •   class DataSets(object):



  •     pass



  •   data_sets = DataSets()



  •   if fake_data:



  •     data_sets.train = DataSet([], [], fake_data=True)



  •     data_sets.validation = DataSet([], [], fake_data=True)



  •     data_sets.test = DataSet([], [], fake_data=True)



  •     return data_sets



  •   TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'



  •   TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'



  •   TEST_IMAGES = 't10k-images-idx3-ubyte.gz'



  •   TEST_LABELS = 't10k-labels-idx1-ubyte.gz'



  •   VALIDATION_SIZE = 5000



  •   local_file = maybe_download(TRAIN_IMAGES, train_dir)



  •   train_images = extract_images(local_file)



  •   local_file = maybe_download(TRAIN_LABELS, train_dir)



  •   train_labels = extract_labels(local_file, one_hot=one_hot)



  •   local_file = maybe_download(TEST_IMAGES, train_dir)



  •   test_images = extract_images(local_file)



  •   local_file = maybe_download(TEST_LABELS, train_dir)



  •   test_labels = extract_labels(local_file, one_hot=one_hot)



  •   validation_images = train_images[:VALIDATION_SIZE]



  •   validation_labels = train_labels[:VALIDATION_SIZE]



  •   train_images = train_images[VALIDATION_SIZE:]



  •   train_labels = train_labels[VALIDATION_SIZE:]



  •   data_sets.train = DataSet(train_images, train_labels)



  •   data_sets.validation = DataSet(validation_images, validation_labels)



  •   data_sets.test = DataSet(test_images, test_labels)



  •   return data_sets




1 个回复

正序浏览
奈斯,加油加油
回复 使用道具 举报
您需要登录后才可以回帖 登录 | 加入黑马