A股上市公司传智教育(股票代码 003032)旗下技术交流社区北京昌平校区

 找回密码
 加入黑马

QQ登录

只需一步,快速开始

在Matlab使用高斯滤波器

本文首先使用Matlab展示示例,我要做的是在Matlab中演示过滤中的代码和效果。

基本上,Matlab构建过滤器和应用过滤器是非常常见,甚至琐碎的。

Matlab,我们要做的是定义两件事:

第一:我们将定义内核的大小;(请记住,这就是我们之前谈论的内容)

>> hsize = 31;

在这个例子它将是31乘31。注意是核大小为奇数,注意我才可以把中心像素画下来。

第尔:我们将定义sigma的大小;

我要让sigma为5。

Matlab有一个非常棒的小函数fspecial。



  • >> sigma = 5;



  • >> h = fspecial('gaussian', hsize, sigma);


在fspecial中,您可以为其指定参数,其中一个是您想要的过滤器类型。我们选择"gaussian"。

您还必须给它hsize和sigma,才能完成这个函数的操作。

您也可以给它矩形尺寸和多个sigma。完成后,它将为您构建这些过滤器。

事实上,Matlab有一个叫做冲浪的美丽小功能。

>> surf(h);

对,如果你用正确的颜色图画出来,它会把你画成一个曲面,你会看到这个:

您还可以将其显示为俯瞰的图像,

>> imagesc(h);

运行代码后效果如图:

但更重要的是,你可以取你的图像,这是我们这里熊猫的图像:

我可以用这个h对它进行过滤:



  • >> outim = imfiler(im, h);



  • >> imshow(outim);


这是我们刚建立的过滤器,然后我可以展示它。那会是什么样子?

这将是一只模糊的熊猫。

此代码是构建过滤器并将其应用于Matlab中的图像所需的全部代码。

这很容易。

同样,根据sigma的大小,我们得到不同的平滑量。

所以这里我们使用三个不同的sigma:1,3和10。代码如下:



  • >> for sigma = 1:3:10



  •     h = fspecial('gaussian', fsize, sigma);



  •     out = imfiler(im, h);



  •     imshow(out);



  •     pause;



  •    end


我们使用不同大小的sigmas建立我们的高斯,我们过滤并显示它们,结果如图:

如你所看,我们得到了不会模糊,一般模糊,很模糊的三个不同效果。(注意模糊是由sigma大小决定,而不是内核大小)

这就是在Matlab中构建这些过滤器所需的全部内容。


在Octave高斯滤波器去除噪音

我们谈一下使用滤波器去除噪声,让我们看看它是如何运作的。

让我们加载一个完美的图像。



  • >> img = imread('saturn.png');



  • >> imshow(img);


代码运行结果如下:

然后通过添加一些噪音来破坏它。



  • >> noise = randn(size(img)) .* 25;



  • >> noise_img = img + noise;



  • >> imshow(noise_img);


代码运行结果如下:

我应该为这个sigma命名以避免以后混淆。



  • >> noise_sigma = 25;



  • >> noise = randn(size(img)) .* noise_sigma;



  • >> noise_img = img + noise;



  • >> imshow(noise_img);


最后,我们知道如何创建高斯滤波器。我们定义一个内核大小和一个sigma。



  • >> filter_size = 11;



  • >> filter_sigma = 2;


接着我们可以使用图像包中的fspecial函数。所以首先加载包,然后创建过滤器。



  • >> pkg load image;



  • >> filter = fspecial('gaussian', filter_size, filter_sigma);


现在,我们可以应用此过滤器来消除噪音。



  • >> smoothed = imfilter(niose_img, filter);



  • >> imshow(smoothed);


注意imfilter中参数的顺序:首先是图像,然后是过滤器。

代码运行后:

请注意滤镜是如何平滑的,或者更确切地说是模糊了图像。

像噪音一样的细微颗粒现在被弄模糊了。但是过滤器也对原始图像产生了很大影响。

因此,去除噪音并不神奇。你不可能完全回到最初的状态。

在视觉上,它可能看起来不太令人印象深刻,但是考虑到噪声图像与平滑图像相比,图像处理程序的进一步表现非常不同。

继续,自己运行此代码,你尝试不同的参数来生成噪音和平滑。


1 个回复

正序浏览
奈斯
回复 使用道具 举报
您需要登录后才可以回帖 登录 | 加入黑马