在Matlab使用高斯滤波器 本文首先使用Matlab展示示例,我要做的是在Matlab中演示过滤中的代码和效果。 基本上,Matlab构建过滤器和应用过滤器是非常常见,甚至琐碎的。 Matlab,我们要做的是定义两件事: 第一:我们将定义内核的大小;(请记住,这就是我们之前谈论的内容) >> hsize = 31;在这个例子它将是31乘31。注意是核大小为奇数,注意我才可以把中心像素画下来。 第尔:我们将定义sigma的大小; 我要让sigma为5。 Matlab有一个非常棒的小函数fspecial。
>> sigma = 5;
>> h = fspecial('gaussian', hsize, sigma);
在fspecial中,您可以为其指定参数,其中一个是您想要的过滤器类型。我们选择"gaussian"。 您还必须给它hsize和sigma,才能完成这个函数的操作。 您也可以给它矩形尺寸和多个sigma。完成后,它将为您构建这些过滤器。 事实上,Matlab有一个叫做冲浪的美丽小功能。 >> surf(h);对,如果你用正确的颜色图画出来,它会把你画成一个曲面,你会看到这个: 您还可以将其显示为俯瞰的图像, >> imagesc(h); 运行代码后效果如图: 但更重要的是,你可以取你的图像,这是我们这里熊猫的图像: 我可以用这个h对它进行过滤:
>> outim = imfiler(im, h);
>> imshow(outim);
这是我们刚建立的过滤器,然后我可以展示它。那会是什么样子? 这将是一只模糊的熊猫。 此代码是构建过滤器并将其应用于Matlab中的图像所需的全部代码。 这很容易。 同样,根据sigma的大小,我们得到不同的平滑量。 所以这里我们使用三个不同的sigma:1,3和10。代码如下:
>> for sigma = 1:3:10
h = fspecial('gaussian', fsize, sigma);
out = imfiler(im, h);
imshow(out);
pause;
end
我们使用不同大小的sigmas建立我们的高斯,我们过滤并显示它们,结果如图: 如你所看,我们得到了不会模糊,一般模糊,很模糊的三个不同效果。(注意模糊是由sigma大小决定,而不是内核大小) 这就是在Matlab中构建这些过滤器所需的全部内容。
在Octave高斯滤波器去除噪音我们谈一下使用滤波器去除噪声,让我们看看它是如何运作的。 让我们加载一个完美的图像。
>> img = imread('saturn.png');
>> imshow(img);
代码运行结果如下: 然后通过添加一些噪音来破坏它。
>> noise = randn(size(img)) .* 25;
>> noise_img = img + noise;
>> imshow(noise_img);
代码运行结果如下: 我应该为这个sigma命名以避免以后混淆。
>> noise_sigma = 25;
>> noise = randn(size(img)) .* noise_sigma;
>> noise_img = img + noise;
>> imshow(noise_img);
最后,我们知道如何创建高斯滤波器。我们定义一个内核大小和一个sigma。
>> filter_size = 11;
>> filter_sigma = 2;
接着我们可以使用图像包中的fspecial函数。所以首先加载包,然后创建过滤器。
>> pkg load image;
>> filter = fspecial('gaussian', filter_size, filter_sigma);
现在,我们可以应用此过滤器来消除噪音。
>> smoothed = imfilter(niose_img, filter);
>> imshow(smoothed);
注意imfilter中参数的顺序:首先是图像,然后是过滤器。 代码运行后: 请注意滤镜是如何平滑的,或者更确切地说是模糊了图像。 像噪音一样的细微颗粒现在被弄模糊了。但是过滤器也对原始图像产生了很大影响。 因此,去除噪音并不神奇。你不可能完全回到最初的状态。 在视觉上,它可能看起来不太令人印象深刻,但是考虑到噪声图像与平滑图像相比,图像处理程序的进一步表现非常不同。 继续,自己运行此代码,你尝试不同的参数来生成噪音和平滑。
|