Mask-RCNN代码Mask_RCNN/samples路径下有一个demo.ipynb的文件就是用来测试的,所以我们在这个基础上更改一下,其实主要就是我们新建一个test.ipynb,然后把demo.ipynb代码复制过来,根据需要更改。
一、将demo代码更改
将demo中的代码
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
更改为:这里面的h5文件是我们训练的结果,
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_shapes_0005.h5")
demo中代码class InferenceConfig(coco.CocoConfig):也需要进行更改,要与自己的config匹配。
class InferenceConfig(shapeconfig.ShapesConfig):
ShapesConfig类中代码:
from mrcnn.config import Config
class ShapesConfig(Config):
"""Configuration for training on the toy shapes dataset.
Derives from the base Config class and overrides values specific
to the toy shapes dataset.
"""
# Give the configuration a recognizable name
NAME = "shapes"
# Train on 1 GPU and 8 images per GPU. We can put multiple images on each
# GPU because the images are small. Batch size is 8 (GPUs * images/GPU).
GPU_COUNT = 1
IMAGES_PER_GPU = 1
# Number of classes (including background)
NUM_CLASSES = 1 + 1 # background + 3 shapes
# Use small images for faster training. Set the limits of the small side
# the large side, and that determines the image shape.
IMAGE_MIN_DIM = 448
IMAGE_MAX_DIM = 640
# Use smaller anchors because our image and objects are small
#RPN_ANCHOR_SCALES = (8, 16, 32, 64, 128) # anchor side in pixels
RPN_ANCHOR_SCALES = (8 * 6, 16 * 6, 32 * 6, 64 * 6, 128 * 6)
# Reduce training ROIs per image because the images are small and have
# few objects. Aim to allow ROI sampling to pick 33% positive ROIs.
TRAIN_ROIS_PER_IMAGE = 32
# Use a small epoch since the data is simple
STEPS_PER_EPOCH = 100
# use small validation steps since the epoch is small
VALIDATION_STEPS = 5
二、注意
IMAGE_MIN_DIM = 448
IMAGE_MAX_DIM = 640
是图片的尺寸。(按照自己图片的大小更改)
值得注意的是,Mask_RCNN/mrcnn目录下model.py文件中第1815行到1819行代码
h, w = config.IMAGE_SHAPE[:2]
if h / 2**6 != int(h / 2**6) or w / 2**6 != int(w / 2**6):
raise Exception("Image size must be dividable by 2 at least 6 times "
"to avoid fractions when downscaling and upscaling."
"For example, use 256, 320, 384, 448, 512, ... etc. ")
需要注意图片尺寸的设定最好符合标准,不然会报错。
三、批量保存
这样我们初步可以测试了,但是只能在ipython中一张图片一张图片的测试,且是从images路径下随机取值。
所以我们需要更改代码,获取images文件夹下图片的张数,作为索引,在test.ipynb文件中更改为如下代码:
count = os.listdir(IMAGE_DIR)
for i in range(0,len(count)):
path = os.path.join(IMAGE_DIR, count)
if os.path.isfile(path):
file_names = next(os.walk(IMAGE_DIR))[2]
image = skimage.io.imread(os.path.join(IMAGE_DIR, count))
# Run detection
results = model.detect([image], verbose=1)
r = results[0]
visualize.display_instances(count,image, r['rois'], r['masks'], r['class_ids'],
class_names, r['scores'])
这时,需要到visualize.py文件中更改,在Mask_RCNN/mrcnn路径下找到该文件打开,更改display_instances类代码,在该类中添加一个参数count,并加上plt.savefig()保存图片到指定路径下:
if auto_show:
plt.savefig("./test_results/%3s.jpg"%(str(count[4:7])))
plt.show()
图片命名方式是取被测试图片的第4-7位(我的4-7位是数字)命名。(根据需要可自己改)
四、保存结果
在test_results文件夹中可以正常显示。
---------------------
作者:蹦跶的小羊羔
来源:CSDN
原文:https://blog.csdn.net/yql_617540298/article/details/81123147
版权声明:本文为博主原创文章,转载请附上博文链接!
|
|