A股上市公司传智教育(股票代码 003032)旗下技术交流社区北京昌平校区

 找回密码
 加入黑马

QQ登录

只需一步,快速开始

© as604049322 金牌黑马   /  2014-12-15 21:04  /  1313 人查看  /  1 人回复  /   0 人收藏 转载请遵从CC协议 禁止商业使用本文

本帖最后由 as604049322 于 2014-12-16 09:38 编辑

约瑟夫环(约瑟夫问题)是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围。从编号为k的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个人又出列;依此规律重复下去,直到圆桌周围的人全部出列。通常解决这类问题时我们把编号从0~n-1,最后结果+1即为原问题的解。
/*
这样我们把问题转换一下:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。求胜利者的编号。

我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开始):
k  k+1  k+2  ... n-2, n-1, 0, 1, 2, ... k-2并且从k开始报0。
现在我们把他们的编号做一下转换:
k     --> 0、k+1   --> 1、k+2   --> 2、...、k-2   --> n-3、k-1   --> n-2

变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相信大家都可以推出来:x'=(x+k)%n

如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就行了。(n-2)个人的解呢?当然是先求(n-3)的情况 ---- 这显然就是一个倒推问题!好了,思路出来了,下面写递推公式:

令f表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n]

递推公式
f[1]=0;
f=(f[i-1]+m)%i;  (i>1)

有了这个公式,我们要做的就是从1-n顺序算出f的数值,最后结果是f[n]。因为实际生活中编号总是从1开始,我们输出f[n]+1

下面我化了一张图来表现上面的思路


约瑟夫环思路.png (81.03 KB, 下载次数: 30)

约瑟夫环思路.png

1 个回复

倒序浏览
给自己顶下,,,不知道是不是都会
回复 使用道具 举报
您需要登录后才可以回帖 登录 | 加入黑马