二叉树的特点:(1)非空二叉树只有一个根结点;(2)每一个结点最多有两棵子树,且分别称为该结点的左子树与右子树。 二叉树的基本性质: (1)在二叉树的第k层上,最多有2k-1(k≥1)个结点; (2)深度为m的二叉树最多有2m-1个结点; (3)度为0的结点(即叶子结点)总是比度为2的结点多一个; (4)具有n个结点的二叉树,其深度至少为[log2n]+1,其中[log2n]表示取log2n的整数部分; (5)具有n个结点的完全二叉树的深度为[log2n]+1; (6)设完全二叉树共有n个结点。如果从根结点开始,按层序(每一层从左到右)用自然数1,2,….n给结点进行编号(k=1,2….n),有以下结论: ①若k=1,则该结点为根结点,它没有父结点;若k>1,则该结点的父结点编号为int(k/2); ②若2k≤n,则编号为k的结点的左子结点编号为2k;否则该结点无左子结点(也无右子结点); ③若2k+1≤n,则编号为k的结点的右子结点编号为2k+1;否则该结点无右子结点。 满二叉树是指除最后一层外,每一层上的所有结点有两个子结点,则k层上有2k-1个结点深度为m的满二叉树有2m-1个结点。 |
|