递归算法:是一种直接或者间接地调用自身的算法。在计算机编写程序中,递归算法对解决一大类问题是十分有效的,它往往使算法的描述简洁而且易于理解。
递归算法的特点
递归过程一般通过函数或子过程来实现。
递归算法:在函数或子过程的内部,直接或者间接地调用自己的算法。
递归算法的实质:是把问题转化为规模缩小了的同类问题的子问题。然后递归调用函数(或过程)来表示问题的解。
递归算法解决问题的特点:
(1) 递归就是在过程或函数里调用自身。
(2) 在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口。
(3) 递归算法解题通常显得很简洁,但递归算法解题的运行效率较低。所以一般不提倡用递归算法设计程序。
(4) 在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成栈溢出等。所以一般不提倡用递归算法设计程序。
递归算法所体现的“重复”一般有三个要求:
一是每次调用在规模上都有所缩小(通常是减半);
二是相邻两次重复之间有紧密的联系,前一次要为后一次做准备(通常前一次的输出就作为后一次的输入);
三是在问题的规模极小时必须用直接给出解答而不再进行递归调用,因而每次递归调用都是有条件的(以规模未达到直接解答的大小为条件),无条件递归调用将会成为死循环而不能正常结束。 例子如下:
描述:把一个整数按n(2<=n<=20)进制表示出来,并保存在给定字符串中。比如121用二进制表示得到结果为:“1111001”。
参数说明:s: 保存转换后得到的结果。
n: 待转换的整数。
b: n进制(2<=n<=20)
void
numbconv(char *s, int n, int b)
{
int len;
if(n == 0) {
strcpy(s, "");
return;
}
/* figure out first n-1 digits */
numbconv(s, n/b, b);
/* add last digit */
len = strlen(s);
s[len] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"[n%b];
s[len+1] = '\0';
}
void
main(void)
{
char s[20];
int i, base;
FILE *fin, *fout;
fin = fopen("palsquare.in", "r");
fout = fopen("palsquare.out", "w");
assert(fin != NULL && fout != NULL);
fscanf(fin, "%d", &base);
/*PLS set START and END*/
for(i=START; i <= END; i++) {
numbconv(s, i*i, base);
fprintf(fout, "%s\n", s);
}
exit(0);
} |
|