一个数M若可以写成以a开头的连续n个自然数之和,则M=a+(a+1)+(a+2)+…+(a+n-1)=n*a+n*(n-1)/2,要求a!=0,否则就是以a+1开头的连续n-1个整数了,也就是要求(M-n*(n-1)/2)%n==0,这样就很容易判断一个数可不可以写成连续n个自然数的形式了,遍历n=2…sqrt(M)*2,还可以输出所有解。
复制代码
void divide(int num)
{
int i,j,a;
for(i=2; i<=sqrt((float)num)*2; ++i)
{
if((num-i*(i-1)/2)%i==0)
{
a=(num-i*(i-1)/2)/i;
if(a>0)
{
for(j=0; j<i; ++j)
cout<<a+j<<" ";
}
cout<<endl;
}
}
} |