A股上市公司传智教育(股票代码 003032)旗下技术交流社区北京昌平校区

 找回密码
 加入黑马

QQ登录

只需一步,快速开始

© 易大帅 高级黑马   /  2017-3-15 10:08  /  3002 人查看  /  2 人回复  /   0 人收藏 转载请遵从CC协议 禁止商业使用本文

python迭代器itertools(u010223750)
                                引言itertools是python中的迭代器,有非常强大的功能,掌握这个能够减少很多的编码量,需要写个博文mark一下
Lets begin
  • chain
def chain(*iterables):    # chain('ABC', 'DEF') --> A B C D E F    for it in iterables:        for element in it:            yield element
  • 1
  • 2
  • 3
  • 4
  • 5
如上面的函数定义,chain是第一个迭代数组的每个元素展开,注意到这个是将第一个迭代数组,所以chain展开的是第二维的数组元素,距离来说明:
>>> a=[['abc','def']]>>> for item in itertools.chain(*a):...     print item...abcdef>>> b=[[['abc','abc']]]>>> for item in itertools.chain(*b):...     print item...['abc', 'abc']
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
上面可以明显看出chain的区别。在itertools中和chain有一样功能的是from_iterable(iterable)函数
  • combinations  
    函数定义:
def combinations(iterable, r):    # combinations('ABCD', 2) --> AB AC AD BC BD CD    # combinations(range(4), 3) --> 012 013 023 123    pool = tuple(iterable)    n = len(pool)    if r > n:        return    indices = range(r)    yield tuple(pool for i in indices)    while True:        for i in reversed(range(r)):            if indices != i + n - r:                break        else:            return        indices += 1        for j in range(i+1, r):            indices[j] = indices[j-1] + 1        yield tuple(pool for i in indices)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
由函数定义可以看出,combinations的作用是在iterable数组中产生长度为r的子数组,且位置是唯一的,也就是不能交换的,比如AB和BA是不一样的,类似于排列组合的C(m,n).
这个使用起来比较简单,吸引我的是其实现方式,我觉得很不错,是一个很好的实现方式,大体思路是将每个位置的数从其开始位置移动到其最大能够移动的位置,注意这种移动是从后往前移动
  • combinations_with_replacement
def combinations_with_replacement(iterable, r):    # combinations_with_replacement('ABC', 2) --> AA AB AC BB BC CC    pool = tuple(iterable)    n = len(pool)    if not n and r:        return    indices = [0] * r    yield tuple(pool for i in indices)    while True:        for i in reversed(range(r)):            if indices != n - 1:                break        else:            return        indices[i:] = [indices + 1] * (r - i)        yield tuple(pool for i in indices)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
这个和前一个的区别的是可以重复的选取自身,因此其实现方式和上面的区别是,每个元素都能移动到原数组的最后一个元素,而且当扫描归为之后,是将i位置及其之后的都置为indices+1的数值
>>> for item in itertools.combinations_with_replacement('ABCD',3):...     print item...('A', 'A', 'A')('A', 'A', 'B')('A', 'A', 'C')('A', 'A', 'D')('A', 'B', 'B')('A', 'B', 'C')('A', 'B', 'D')('A', 'C', 'C')('A', 'C', 'D')('A', 'D', 'D')('B', 'B', 'B')('B', 'B', 'C')('B', 'B', 'D')('B', 'C', 'C')('B', 'C', 'D')('B', 'D', 'D')('C', 'C', 'C')('C', 'C', 'D')('C', 'D', 'D')('D', 'D', 'D')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • compress
def compress(data, selectors):    # compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F    return (d for d, s in izip(data, selectors) if s)
  • 1
  • 2
  • 3
compress的作用是选取符合selectors条件的data数据
  • count
def count(start=0, step=1):    # count(10) --> 10 11 12 13 14 ...    # count(2.5, 0.5) -> 2.5 3.0 3.5 ...    n = start    while True:        yield n        n += step
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
count的作用是每次返回一个从start开始步长为step的数组,应用如下:
>>> a=itertools.count(0,1)>>> a.next()0>>> a.next()1>>> a.next()2>>>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • cycle
    函数定义:
def cycle(iterable):    # cycle('ABCD') --> A B C D A B C D A B C D ...    saved = []    for element in iterable:        yield element        saved.append(element)    while saved:        for element in saved:              yield element
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
用法:循环生成iterable的元素:
>>> a=itertools.cycle('ABCD')>>> a.next()'A'>>> a.next()'B'>>> a.next()'C'>>> a.next()'D'>>> a.next()'A'>>> a.next()'B'>>> a.next()'C'>>> a.next()'D'
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • dropwhile
    函数定义:
def dropwhile(predicate, iterable):    # dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1    iterable = iter(iterable)    for x in iterable:        if not predicate(x):            yield x            break    for x in iterable:        yield x
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
从函数定义可以看出来,返回iterable第一个不满足predicate的数组值以及之后的数组值:
>>> a=itertools.dropwhile(lambda x:x>1,[3,2,1,1])>>> a.next()1>>> a.next()1
  • 1
  • 2
  • 3
  • 4
  • 5
  • ifilter
    函数定义:
def ifilter(predicate, iterable):    # ifilter(lambda x: x%2, range(10)) --> 1 3 5 7 9    if predicate is None:        predicate = bool    for x in iterable:        if predicate(x):            yield x
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
返回符合条件的元素
  • ifilterfalse
    和ifilter相反,返回不符合条件的的元素
  • imap

函数定义:
def imap(function, *iterables):    # imap(pow, (2,3,10), (5,2,3)) --> 32 9 1000    iterables = map(iter, iterables)    while True:        args = [next(it) for it in iterables]        if function is None:            yield tuple(args)        else:            yield function(*args)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
功能:给iterables的元素添加上function功能
  • izip
    函数定义:
def izip(*iterables):    # izip('ABCD', 'xy') --> Ax By    iterators = map(iter, iterables)    while iterators:        yield tuple(map(next, iterators))
  • 1
  • 2
  • 3
  • 4
  • 5
功能:成对匹配
演示:
>>> a='ABC'>>> b='123'>>> c='xy'>>> d=itertools.izip(a,b,c)>>> d.next()('A', '1', 'x')>>> d.next()('B', '2', 'y')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • izip_longest
    函数定义:
class ZipExhausted(Exception):    passdef izip_longest(*args, **kwds):    # izip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D-    fillvalue = kwds.get('fillvalue')    counter = [len(args) - 1]    def sentinel():        if not counter[0]:            raise ZipExhausted        counter[0] -= 1        yield fillvalue    fillers = repeat(fillvalue)    iterators = [chain(it, sentinel(), fillers) for it in args]    try:        while iterators:            yield tuple(map(next, iterators))    except ZipExhausted:        pass
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
和izip差不多,不过返回的是最长的匹配,不满足长度的使用指定的fillvalue代替
>>> c=itertools.izip_longest('ABCD','xy','1',fillvalue='*')>>> c.next()('A', 'x', '1')>>> c.next()('B', 'y', '*')>>> c.next()('C', '*', '*')>>> c.next()('D', '*', '*')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • permutations
    -函数定义:
def permutations(iterable, r=None):    # permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC    # permutations(range(3)) --> 012 021 102 120 201 210    pool = tuple(iterable)    n = len(pool)    r = n if r is None else r    if r > n:        return    indices = range(n)    cycles = range(n, n-r, -1)    yield tuple(pool for i in indices[:r])    while n:        for i in reversed(range(r)):            cycles -= 1            if cycles == 0:                indices[i:] = indices[i+1:] + indices[i:i+1]                cycles = n - i            else:                j = cycles                indices, indices[-j] = indices[-j], indices                yield tuple(pool for i in indices[:r])                break        else:            return
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
这个函数和combination有着类似的功能,不同的是,permutation不强调元素的顺序概念,AB和BA是不一样的,这个和排列组合里面的A(m,n)差不多
功能展示:
>>> it=itertools.permutations('ABCD',3)>>> for item in it:...     print item...('A', 'B', 'C')('A', 'B', 'D')('A', 'C', 'B')('A', 'C', 'D')('A', 'D', 'B')('A', 'D', 'C')('B', 'A', 'C')('B', 'A', 'D')('B', 'C', 'A')('B', 'C', 'D')('B', 'D', 'A')('B', 'D', 'C')('C', 'A', 'B')('C', 'A', 'D')('C', 'B', 'A')('C', 'B', 'D')('C', 'D', 'A')('C', 'D', 'B')('D', 'A', 'B')('D', 'A', 'C')('D', 'B', 'A')('D', 'B', 'C')('D', 'C', 'A')('D', 'C', 'B')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
官方定义的函数我没有怎么弄明白,于是写了一个递归的C++版本permutation:
#include<iostream>using namespace std;char str[4]={'A','B','C','D'};char result[4];bool flag[4]={false,false,false,false};int fix=3;void print(){    for(int i=1;i<=fix;i++){        cout<<result;    }    cout<<endl;}void f(int position){    for(int i=0;i<4;i++){        int t=-1;        if(flag==false){            flag=true;            t=i;            result[position]=str;            if(position==fix){                print();                flag=false;                continue;            }else{                f(position+1);            }        }        if(t!=-1){            flag[t]=false;        }    }}int main() {    f(1);    return 0;}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
测试结果如下:
ABCABDACBACDADBADCBACBADBCABCDBDABDCCABCADCBACBDCDACDBDABDACDBADBCDCADCB
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
两者得到的结果是一样的。
  • product
函数定义:
def product(*args, **kwds):    # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy    # product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111    pools = map(tuple, args) * kwds.get('repeat', 1)    result = [[]]    for pool in pools:        result = [x+[y] for x in result for y in pool]    for prod in result:        yield tuple(prod)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
product其实就是元素数组之间的相乘,展示如下:
>>> a=itertools.product('ABCD','xyz')>>> for item in a:...     print item...('A', 'x')('A', 'y')('A', 'z')('B', 'x')('B', 'y')('B', 'z')('C', 'x')('C', 'y')('C', 'z')('D', 'x')('D', 'y')('D', 'z')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • repeat
    函数定义:
def repeat(object, times=None):    # repeat(10, 3) --> 10 10 10    if times is None:        while True:            yield object    else:        for i in xrange(times):            yield object
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
功能,返回times个object,看下面的运用:
>>> list(itertools.imap(pow,xrange(10),itertools.repeat(2)))[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]>>> list(itertools.imap(pow,xrange(10),[2,2,2,2,2,2,2,2,2,2]))[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
  • 1
  • 2
  • 3
  • 4
  • starmap
    函数定义:
def starmap(function, iterable):    # starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000    for args in iterable:        yield function(*args)
  • 1
  • 2
  • 3
  • 4
这个和imap的区别是,imap选取每个参数的相同位置的元素元组作为function的参数,而starmap是将每个参数当做function的参数
  • takewhile
    这个和dropwhile相反,dropwhile是找到第一个不满足predicate的元素以及其之后的元素,而takewhile是返回满足predicate的元素,如果遇到不满足的则返回
    函数定义:
def takewhile(predicate, iterable):    # takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4    for x in iterable:        if predicate(x):            yield x        else:            break
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
演示:
>>> for item in itertools.takewhile(lambda x: x<5, [1,4,6,4,1]):...     print item...14
  • 1
  • 2
  • 3
  • 4
  • 5
具体的运用例子场景:对于一段文本,我们需要统计每个单词的词频。
方法:运用nltk的分句和分词功能后,运用FreqDist进行统计词频
代码:
import nltkimport itertoolsdef process(str):    sentences=itertools.chain(*[nltk.sent_tokenize(str.decode('utf-8').lower())])    words_dict=itertools.chain(*[nltk.word_tokenize(sen) for sen in sentences])    fdist=nltk.FreqDist(words_dict)    print fdist.most_common(10)    fdist.plot(50,cumulative=True)if __name__=='__main__':    text="My interpretation: Gom Jabbar is an ancient non-Latin incantation in HPMORverse which Draco just happened to have researched in old dark tomes, and far predates the writings we're familiar with. Frank Herbert somehow picked up on the phrase, either overhearing it in passing or perhaps by having some actual knowledge of the magical world (e.g. magical relative or somesuch)."    process(text)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
代码打印出这段文字的频率最高的10个单词,并作出前50个词的累积频率图,结果如下:
[(u'in', 3), (u'.', 3), (u'the', 3), (u',', 2), (u'magical', 2), (u'or', 2), (u'jabbar', 1), (u'and', 1), (u'writings', 1), (u'interpretation', 1)]
  • 1

                                                       
                       

2 个回复

倒序浏览
看着眼晕
回复 使用道具 举报
哦·····嗯··
回复 使用道具 举报
您需要登录后才可以回帖 登录 | 加入黑马