本帖最后由 欢迎光临 于 2018-3-8 17:04 编辑
想要理解volatile为什么能确保可见性,我们要先了解并发编程的三大概念:原子性,有序性,可见性。 原子性1.定义原子性:即一个操作或者多个操作 要么全部执行并且执行的过程不会被任何因素打断,要么就都不执行。 可见性1.定义可见性是指当多个线程访问同一个变量时,一个线程修改了这个变量的值,其他线程能够立即看得到修改的值。 有序性1.定义有序性:即程序执行的顺序按照代码的先后顺序执行。 深入理解volatile关键字1.volatile保证可见性一旦一个共享变量(类的成员变量、类的静态成员变量)被volatile修饰之后,那么就具备了两层语义: 1)保证了不同线程对这个变量进行操作时的可见性,即一个线程修改了某个变量的值,这新值对其他线程来说是立即可见的。 2)禁止进行指令重排序。 先看一段代码,假如线程1先执行,线程2后执行:
[Java] 纯文本查看 复制代码 //线程1
boolean stop = false;
while(!stop){
doSomething();
}
//线程2
stop = true;
这段代码是很典型的一段代码,很多人在中断线程时可能都会采用这种标记办法。但是事实上,这段代码会完全运行正确么?即一定会将线程中断么?不一定,也许在大多数时候,这个代码能够把线程中断,但是也有可能会导致无法中断线程(虽然这个可能性很小,但是只要一旦发生这种情况就会造成死循环了)。 下面解释一下这段代码为何有可能导致无法中断线程。在前面已经解释过,每个线程在运行过程中都有自己的工作内存,那么线程1在运行的时候,会将stop变量的值拷贝一份放在自己的工作内存当中。 那么当线程2更改了stop变量的值之后,但是还没来得及写入主存当中,线程2转去做其他事情了,那么线程1由于不知道线程2对stop变量的更改,因此还会一直循环下去。 但是用volatile修饰之后就变得不一样了: 第一:使用volatile关键字会强制将修改的值立即写入主存; 第二:使用volatile关键字的话,当线程2进行修改时,会导致线程1的工作内存中缓存变量stop的缓存行无效(反映到硬件层的话,就是CPU的L1或者L2缓存中对应的缓存行无效); 第三:由于线程1的工作内存中缓存变量stop的缓存行无效,所以线程1再次读取变量stop的值时会去主存读取。 那么在线程2修改stop值时(当然这里包括2个操作,修改线程2工作内存中的值,然后将修改后的值写入内存),会使得线程1的工作内存中缓存变量stop的缓存行无效,然后线程1读取时,发现自己的缓存行无效,它会等待缓存行对应的主存地址被更新之后,然后去对应的主存读取最新的值。 那么线程1读取到的就是最新的正确的值。 2.volatile不能确保原子性下面看一个例子:
[Java] 纯文本查看 复制代码 public class Test {
public volatile int inc = 0;
public void increase() {
inc++;
}
public static void main(String[] args) {
final Test test = new Test();
for(int i=0;i<10;i++){
new Thread(){
public void run() {
for(int j=0;j<1000;j++)
test.increase();
};
}.start();
}
while(Thread.activeCount()>1) //保证前面的线程都执行完
Thread.yield();
System.out.println(test.inc);
}
}
大家想一下这段程序的输出结果是多少?也许有些朋友认为是10000。但是事实上运行它会发现每次运行结果都不一致,都是一个小于10000的数字。 可能有的朋友就会有疑问,不对啊,上面是对变量inc进行自增操作,由于volatile保证了可见性,那么在每个线程中对inc自增完之后,在其他线程中都能看到修改后的值啊,所以有10个线程分别进行了1000次操作,那么最终inc的值应该是1000*10=10000。 这里面就有一个误区了,volatile关键字能保证可见性没有错,但是上面的程序错在没能保证原子性。可见性只能保证每次读取的是最新的值,但是volatile没办法保证对变量的操作的原子性。 在前面已经提到过,自增操作是不具备原子性的,它包括读取变量的原始值、进行加1操作、写入工作内存。那么就是说自增操作的三个子操作可能会分割开执行,就有可能导致下面这种情况出现: 假如某个时刻变量inc的值为10, 线程1对变量进行自增操作,线程1先读取了变量inc的原始值,然后线程1被阻塞了; 然后线程2对变量进行自增操作,线程2也去读取变量inc的原始值,由于线程1只是对变量inc进行读取操作,而没有对变量进行修改操作,所以不会导致线程2的工作内存中缓存变量inc的缓存行无效,也不会导致主存中的值刷新,所以线程2会直接去主存读取inc的值,发现inc的值时10,然后进行加1操作,并把11写入工作内存,最后写入主存。 然后线程1接着进行加1操作,由于已经读取了inc的值,注意此时在线程1的工作内存中inc的值仍然为10,所以线程1对inc进行加1操作后inc的值为11,然后将11写入工作内存,最后写入主存。 那么两个线程分别进行了一次自增操作后,inc只增加了1。 根源就在这里,自增操作不是原子性操作,而且volatile也无法保证对变量的任何操作都是原子性的。 解决方案:可以通过synchronized或lock,进行加锁,来保证操作的原子性。也可以通过AtomicInteger。 在java 1.5的java.util.concurrent.atomic包下提供了一些原子操作类,即对基本数据类型的 自增(加1操作),自减(减1操作)、以及加法操作(加一个数),减法操作(减一个数)进行了封装,保证这些操作是原子性操作。atomic是利用CAS来实现原子性操作的(Compare And Swap),CAS实际上是利用处理器提供的CMPXCHG指令实现的,而处理器执行CMPXCHG指令是一个原子性操作。 3.volatile保证有序性在前面提到volatile关键字能禁止指令重排序,所以volatile能在一定程度上保证有序性。 volatile关键字禁止指令重排序有两层意思: 1)当程序执行到volatile变量的读操作或者写操作时,在其前面的操作的更改肯定全部已经进行,且结果已经对后面的操作可见;在其后面的操作肯定还没有进行; 2)在进行指令优化时,不能将在对volatile变量的读操作或者写操作的语句放在其后面执行,也不能把volatile变量后面的语句放到其前面执行。 可能上面说的比较绕,举个简单的例子:
[Java] 纯文本查看 复制代码 //x、y为非volatile变量
//flag为volatile变量
x = 2; //语句1
y = 0; //语句2
flag = true; //语句3
x = 4; //语句4
y = -1; //语句5
由于flag变量为volatile变量,那么在进行指令重排序的过程的时候,不会将语句3放到语句1、语句2前面,也不会讲语句3放到语句4、语句5后面。但是要注意语句1和语句2的顺序、语句4和语句5的顺序是不作任何保证的。 并且volatile关键字能保证,执行到语句3时,语句1和语句2必定是执行完毕了的,且语句1和语句2的执行结果对语句3、语句4、语句5是可见的。 那么我们回到前面举的一个例子:
[Java] 纯文本查看 复制代码 //线程1:
context = loadContext(); //语句1
inited = true; //语句2
//线程2:
while(!inited ){
sleep()
}
doSomethingwithconfig(context);
前面举这个例子的时候,提到有可能语句2会在语句1之前执行,那么久可能导致context还没被初始化,而线程2中就使用未初始化的context去进行操作,导致程序出错。 这里如果用volatile关键字对inited变量进行修饰,就不会出现这种问题了,因为当执行到语句2时,必定能保证context已经初始化完毕。 volatile的实现原理1.可见性处理器为了提高处理速度,不直接和内存进行通讯,而是将系统内存的数据独到内部缓存后再进行操作,但操作完后不知什么时候会写到内存。 如果对声明了volatile变量进行写操作时,JVM会向处理器发送一条Lock前缀的指令,将这个变量所在缓存行的数据写会到系统内存。 这一步确保了如果有其他线程对声明了volatile变量进行修改,则立即更新主内存中数据。 但这时候其他处理器的缓存还是旧的,所以在多处理器环境下,为了保证各个处理器缓存一致,每个处理会通过嗅探在总线上传播的数据来检查 自己的缓存是否过期,当处理器发现自己缓存行对应的内存地址被修改了,就会将当前处理器的缓存行设置成无效状态,当处理器要对这个数据进行修改操作时,会强制重新从系统内存把数据读到处理器缓存里。 这一步确保了其他线程获得的声明了volatile变量都是从主内存中获取最新的。 2.有序性Lock前缀指令实际上相当于一个内存屏障(也成内存栅栏),它确保指令重排序时不会把其后面的指令排到内存屏障之前的位置,也不会把前面的指令排到内存屏障的后面;即在执行到内存屏障这句指令时,在它前面的操作已经全部完成。 volatile的应用场景synchronized关键字是防止多个线程同时执行一段代码,那么就会很影响程序执行效率,而volatile关键字在某些情况下性能要优于synchronized,但是要注意volatile关键字是无法替代synchronized关键字的,因为volatile关键字无法保证操作的原子性。通常来说,使用volatile必须具备以下2个条件: 1)对变量的写操作不依赖于当前值 2)该变量没有包含在具有其他变量的不变式中 下面列举几个Java中使用volatile的几个场景。 ①.状态标记量
[Java] 纯文本查看 复制代码 volatile boolean flag = false;
//线程1
while(!flag){
doSomething();
}
//线程2
public void setFlag() {
flag = true;
}
根据状态标记,终止线程。 ②.单例模式中的double check
[Java] 纯文本查看 复制代码 class Singleton{
private volatile static Singleton instance = null;
private Singleton() {
}
public static Singleton getInstance() {
if(instance==null) {
synchronized (Singleton.class) {
if(instance==null)
instance = new Singleton();
}
}
return instance;
}
}
为什么要使用volatile 修饰instance?主要在于instance = new Singleton()这句,这并非是一个原子操作,事实上在 JVM 中这句话大概做了下面 3 件事情: 1.给 instance 分配内存 2.调用 Singleton 的构造函数来初始化成员变量 3.将instance对象指向分配的内存空间(执行完这步 instance 就为非 null 了)。 但是在 JVM 的即时编译器中存在指令重排序的优化。也就是说上面的第二步和第三步的顺序是不能保证的,最终的执行顺序可能是 1-2-3 也可能是 1-3-2。如果是后者,则在 3 执行完毕、2 未执行之前,被线程二抢占了,这时 instance 已经是非 null 了(但却没有初始化),所以线程二会直接返回 instance,然后使用,然后顺理成章地报错。
节选自ImportNew
|