A股上市公司传智教育(股票代码 003032)旗下技术交流社区北京昌平校区

 找回密码
 加入黑马

QQ登录

只需一步,快速开始

一、 Spark计算模型(二):RDD的容错机制
1.    RDD的容错
A)         缓存方式:
Cache:直接将rdd中的数据保存在内存中,其本质是persist(StorageLevel.MEMOEY_ONLY)。
Persist:可以有丰富的缓存级别
当rdd设置了缓存之后,如果下面有需要用到该RDD的数据的时候,就不要重复计算,可以直接从缓存中获取得到。
       B)     checkpoint:
会对数据进行一个持久化操作,保存在hdfs
使用的时候
需要sc.setCheckpointdir来设置一个检查点目录
对需要缓存的rdd调用checkpoint
注意:同样在执行数据缓存的时候,需要有对应的action算子操作,才会真正触发持久化操作。
在做checkpoint操作的时候,此时会先执行对应触发action算子的rdd结果,计算完成之后又会开辟一个新的job来计算你设置了checkpoint的rdd的结果。
在设置了checkpoint之后,对应这个rdd会改变之前的依赖关系,如果当前数据丢失了,只有重头计算得到。
如何使用checkpoint:
可以对要做checkPoint的rdd,先进行一个cache
在做一个checkpint操作
数据恢复的一般顺序:
内存---------->checkpoint------------>重新计算得到
           2.checkpoint是什么
                (1)、Spark 在生产环境下经常会面临transformation的RDD非常多(例如一个Job中包含1万个RDD)或者具体transformation的RDD本身计算特别复杂     或者耗时(例如计算时长超过1个小时),这个时候就要考虑对计算结果数据的持久化;
               (2)、Spark是擅长多步骤迭代的,同时擅长基于Job的复用,这个时候如果能够对曾经计算的过程产生的数据进行复用,就可以极大的提升效率;
               (3)、如果采用persist把数据放在内存中,虽然是快速的,但是也是最不可靠的;如果把数据放在磁盘上,也不是完全可靠的!例如磁盘会损坏,系统管理员可能清空磁盘
               (4)、Checkpoint的产生就是为了相对而言更加可靠的持久化数据,在Checkpoint的时候可以指定把数据放在本地,并且是多副本的方式,但是在生产环境下是放在HDFS上,这就天然的借助了HDFS高容错、高可靠的特征来完成了最大化的可靠的持久化数据的方式;
               (5)、Checkpoint是为了最大程度保证绝对可靠的复用RDD计算数据的Spark高级功能,通过checkpoint我们通常把数据持久化到HDFS来保证数据最大程度的安全性;
               (6)、Checkpoint就是针对整个RDD计算链条中特别需要数据持久化的环节(后面会反复使用当前环节的RDD)开始基于HDFS等的数据持久化复用策略,通过对RDD启动checkpoint机制来实现容错和高可用;
              由此当加入进行一个1万个步骤,在9000个步骤的时候persist,数据还是有可能丢失的,但是如果checkpoint,数据丢失的概率几乎为0。
            3.     checkpoint原理机制
               (1)当RDD使用cache机制从内存中读取数据,如果数据没有读到,会使用checkpoint机制读取数据。此时如果没有checkpoint机制,那么就需要找到父RDD重新计算数据了,因此checkpoint是个很重要的容错机制。checkpoint就是对于一个RDD chain(链),如果中间某些中间结果RDD,后面需要反复使用该数据,可能因为一些故障导致该中间数据丢失,那么就可以针对该RDD启动checkpoint机制,checkpoint,首先需要调用sparkContext的setCheckpoint方法,设置一个容错文件系统目录,比如hdfs,然后对RDD调用checkpoint方法。之后再RDD所处的job运行结束后,会启动一个单独的job,来将checkpoint过的数据写入之前设置的文件系统持久化,进行高可用。所以后面的计算在使用该RDD时,如果数据丢失了,但是还是可以从它的checkpoint中读取数据,不需要重新计算。
               (2)persist或者cache与checkpoint的区别在于,前者持久化只是将数据保存在BlockManager中但是其lineage是不变的,但是后者checkpoint执行完后,rdd已经没有依赖RDD,只有一个checkpointRDD,checkpoint之后,RDD的lineage就改变了。而且,持久化的数据丢失的可能性更大,因为可能磁盘或内存被清理,但是checkpoint的数据通常保存到hdfs上,放在了高容错文件系统。

                    推荐阅读


0 个回复

您需要登录后才可以回帖 登录 | 加入黑马