在 前面一文 中,我们构造了一个非常简单的数据结构,这个数据结构也是整个区块链数据库的核心。目前所完成的区块链原型,已经可以通过链式关系把区块相互关联起来:每个块都被连接到前一个块。 但是,我们实现的区块链有一个巨大的缺点:向链中加入区块太容易和廉价了。而区块链和比特币的其中一个核心就是,要想加入新的区块,必须先完成一些非常困难的工作。在本文,我们将会解决这个缺点。 工作量证明区块链的一个关键点就是,一个人必须经过一系列困难的工作,才能将数据放入到区块链中。正是这种困难的工作,才使得区块链是安全和一致的。此外,完成这个工作的人也会获得奖励(这也就是通过挖矿获得币)。 这个机制与生活的一个现象非常类似:一个人必须通过努力工作,才能够获得回报或者奖励,用以支撑他们的生活。在区块链中,是通过网络中的参与者(矿工)不断的工作来支撑整个网络,也就是矿工不断地向区块链中加入新块,然后获得相应的奖励。作为他们努力工作的结果,新生成的区块就能够被安全地被加入到区块链中,这种机制维护了整个区块链数据库的稳定性。值得注意的是,完成了这个工作的人必须要证明这一点,他必须要证明确实是他完成了这些工作。 整个 “努力工作并进行证明” 的机制,就叫做工作量证明(proof-of-work)。要想完成工作非常地不容易,因为这需要大量的计算能力:即便是高性能计算机,也无法在短时间内快速完成。此外,这个工作的困难度会随着时间不断增长,以保持每个小时大概出 6 个新块的速度。在比特币中,这个工作的目的是为了找到一个块的哈希,同时这个哈希满足了一些必要条件。这个哈希,也就充当了证明的角色。因此,寻求证明(寻找有效哈希),就是实际要做的事情。 哈希计算在本节中,我们会讨论哈希计算。如果你已经熟悉了这个概念,可以跳过这一节。 获得指定数据的一个哈希值的过程,就叫做哈希计算。一个哈希,就是对所计算数据的一个唯一的表示。一个哈希函数输入任意大小的数据,输出一个固定大小的哈希值。下面是哈希的几个关键特性: - 无法从一个哈希值恢复原始数据。也就是说,哈希并不是加密。
- 对于特定的数据,只能有一个哈希,并且这个哈希是唯一的。
- 即使是仅仅改变输入数据中的一个字节,也会导致输出一个完全不同的哈希。
哈希函数被广泛用于检测数据的一致性。一些软件提供者除了提供软件包以外,还会发布校验和。当下载完一个文件以后,你可以用哈希函数对下载好的文件计算一个哈希,并与作者提供的哈希进行比较,以此来保证文件下载的完整性。 在区块链中,哈希被用于保证一个块的一致性。哈希算法的输入数据包含了前一个块的哈希,因此使得不太可能(或者,至少很困难)去修改链中的一个块:因为如果一个人想要修改前面一个块的哈希,那么他必须要重新计算这个块以及后面所有块的哈希。 Hashcash比特币使用 Hashcash ,一个最初用来防止垃圾邮件的工作量证明算法。它可以被分解为以下步骤: - 取一些公开的数据(比如,如果是 email 的话,它可以是接收者的邮件地址;在比特币中,它是区块头)
- 给这个公开数据添加一个计数器。计数器默认从 0 开始
- 将 data(数据) 和 counter(计数器) 组合到一起,获得一个哈希
- 检查哈希是否符合一定的条件:
- 如果符合条件,结束
- 如果不符合,增加计数器,重复步骤 3-4
因此,这是一个暴力算法:改变计数器,计算一个新的哈希,检查,增加计数器,计算一个哈希,检查,如此反复。这也是为什么说它是在计算上是非常昂贵的,因为这一步需要如此反复不断地计算和检查。 现在,让我们来仔细看一下一个哈希要满足的必要条件。在原始的 Hashcash 实现中,它的要求是 “一个哈希的前 20 位必须是 0”。在比特币中,这个要求会随着时间而不断变化。因为按照设计,必须保证每 10 分钟生成一个块,而不论计算能力会随着时间增长,或者是会有越来越多的矿工进入网络,所以需要动态调整这个必要条件。 为了阐释这一算法,我从前一个例子(“I like donuts”)中取得数据,并且找到了一个前 3 个字节是全是 0 的哈希。 ca07ca 是计数器的 16 进制值,十进制的话是 13240266. 实现好了,完成了理论层面,来开始写代码吧!首先,定义挖矿的难度值:
const targetBits = 24
在比特币中,当一个块被挖出来以后,“target bits” 代表了区块头里存储的难度。这里的 24 指的是算出来的哈希前 24 位必须是 0,用 16 进制表示化的话,就是前 6 位必须是 0,这一点可以在最后的输出可以看出来。目前不会实现一个动态调整目标的算法,所以将难度定义为一个全局的常量即可。
24 其实是一个可以任意取的数字,目的是要有一个目标(target)而已,这个目标占据不到 256 位的内存空间。同时,我们想要有足够的差异性,但是又不至于大的过分,因为差异性越大,就越难找到一个合适的哈希。
type ProofOfWork struct { block *Block target *big.Int }
func NewProofOfWork(b *Block) *ProofOfWork { target := big.NewInt(1) target.Lsh(target, uint(256-targetBits))
pow := &ProofOfWork{b, target}
return pow }
这里,我们构造了 ProofOfWork 结构,里面存储了指向一个块和一个目标的指针。“目标” ,也就是前一节中所描述的必要条件。这里使用了一个 大 整数,我们将哈希与目标进行比较:先把一个哈希转换成一个大整数,然后检测它是否小于目标。
在 NewProofOfWork 函数中,我们将 big.Int 初始化为 1,然后左移 256 - targetBits 位。256 是一个 SHA-256 哈希的位数,我们将要使用的是 SHA-256 哈希算法。target(目标) 的 16 进制形式为:
0x10000000000000000000000000000000000000000000000000000000000 1 它在内存上占据了 29 个字节。下面是与前面例子哈希的形式化比较:
0fac49161af82ed938add1d8725835cc123a1a87b1b196488360e58d4bfb51e3 0000010000000000000000000000000000000000000000000000000000000000 0000008b0f41ec78bab747864db66bcb9fb89920ee75f43fdaaeb5544f7f76ca
第一个哈希(基于 “I like donuts” 计算)比目标要大,因此它并不是一个有效的工作量证明。第二个哈希(基于 “I like donutsca07ca” 计算)比目标要小,所以是一个有效的证明。
译者注:评论有人提出上面的形式化比较有些“言不符实”,其实它应该并非由 “I like donuts” 而来,但是原文作者表达的意思是没问题的,可能是疏忽而已。下面是我做的一个小实验:
package main
import ( "crypto/sha256" "fmt" "math/big" )
func main() {
data1 := []byte("I like donuts") data2 := []byte("I like donutsca07ca") targetBits := 24 target := big.NewInt(1) target.Lsh(target, uint(256-targetBits)) fmt.Printf("%x\n", sha256.Sum256(data1)) fmt.Printf("%64x\n", target) fmt.Printf("%x\n", sha256.Sum256(data2))
}
输出: 你可以把目标想象为一个范围的上界:如果一个数(由哈希转换而来)比上界要小,那么这是有效的,反之无效。因为要求比上界要小,所以会导致更少的有效数字。因此,也就需要通过困难的工作(一系列反复的计算),才能找到一个有效的数字。 现在,我们需要有数据来进行哈希,准备数据:
func (pow *ProofOfWork) prepareData(nonce int) []byte { data := bytes.Join( [][]byte{ pow.block.PrevBlockHash, pow.block.Data, IntToHex(pow.block.Timestamp), IntToHex(int64(targetBits)), IntToHex(int64(nonce)), }, []byte{}, )
return data }
这个部分比较直观:只需要将 target ,nonce 与 Block 进行合并。这里的 nonce ,就是上面 Hashcash 所提到的计数器,它是一个密码学术语。
很好,到这里,所有的准备工作就完成了,下面来实现 PoW 算法的核心:
func (pow *ProofOfWork) Run() (int, []byte) { var hashInt big.Int var hash [32]byte nonce := 0
fmt.Printf("Mining the block containing \"%s\"\n", pow.block.Data) for nonce < maxNonce { data := pow.prepareData(nonce) hash = sha256.Sum256(data) hashInt.SetBytes(hash[:])
if hashInt.Cmp(pow.target) == -1 { fmt.Printf("\r%x", hash) break } else { nonce++ } } fmt.Print("\n\n")
return nonce, hash[:] }
首先我们对变量进行初始化:
HashInt 是 hash 的整形表示; nonce 是计数器。 然后开始一个 “无限” 循环:maxNonce 对这个循环进行了限制, 它等于 math.MaxInt64。这是为了避免 nonce 可能出现的溢出。尽管我们的 PoW 实现的难度太小了,以至于计数器其实不太可能会溢出,但最好还是以防万一检查一下。
在这个循环中,我们做的事情有:
准备数据 用 SHA-256 对数据进行哈希 将哈希转换成一个大整数 将这个大整数与目标进行比较 跟之前所讲的一样简单。现在我们可以移除 Block 的 SetHash 方法,然后修改 NewBlock 函数:
func NewBlock(data string, prevBlockHash []byte) *Block { block := &Block{time.Now().Unix(), []byte(data), prevBlockHash, []byte{}, 0} pow := NewProofOfWork(block) nonce, hash := pow.Run()
block.Hash = hash[:] block.Nonce = nonce
return block }
在这里,你可以看到 nonce 被保存为 Block 的一个属性。这是十分有必要的,因为待会儿我们需要用 nonce 来对这个工作量进行证明。Block 结构现在看起来像是这样:
type Block struct { Timestamp int64 Data []byte PrevBlockHash []byte Hash []byte Nonce int }
好了!现在让我们来运行一下是否正常工作:
Mining the block containing "Genesis Block" 00000041662c5fc2883535dc19ba8a33ac993b535da9899e593ff98e1eda56a1
Mining the block containing "Send 1 BTC to Ivan" 00000077a856e697c69833d9effb6bdad54c730a98d674f73c0b30020cc82804
Mining the block containing "Send 2 more BTC to Ivan" 000000b33185e927c9a989cc7d5aaaed739c56dad9fd9361dea558b9bfaf5fbe
Prev. hash: Data: Genesis Block Hash: 00000041662c5fc2883535dc19ba8a33ac993b535da9899e593ff98e1eda56a1
Prev. hash: 00000041662c5fc2883535dc19ba8a33ac993b535da9899e593ff98e1eda56a1 Data: Send 1 BTC to Ivan Hash: 00000077a856e697c69833d9effb6bdad54c730a98d674f73c0b30020cc82804
Prev. hash: 00000077a856e697c69833d9effb6bdad54c730a98d674f73c0b30020cc82804 Data: Send 2 more BTC to Ivan Hash: 000000b33185e927c9a989cc7d5aaaed739c56dad9fd9361dea558b9bfaf5fbe
成功了!你可以看到每个哈希都是 3 个字节的 0 开始,并且获得这些哈希需要花费一些时间。
还剩下一件事情需要做,对工作量证明进行验证:
func (pow *ProofOfWork) Validate() bool { var hashInt big.Int
data := pow.prepareData(pow.block.Nonce) hash := sha256.Sum256(data) hashInt.SetBytes(hash[:])
isValid := hashInt.Cmp(pow.target) == -1
return isValid }
这里,就是我们就用到了上面保存的 nonce。
再来检测一次是否正常工作:
func main() { ...
for _, block := range bc.blocks { ... pow := NewProofOfWork(block) fmt.Printf("PoW: %s\n", strconv.FormatBool(pow.Validate())) fmt.Println() } }
输出:
...
Prev. hash: Data: Genesis Block Hash: 00000093253acb814afb942e652a84a8f245069a67b5eaa709df8ac612075038 PoW: true
Prev. hash: 00000093253acb814afb942e652a84a8f245069a67b5eaa709df8ac612075038 Data: Send 1 BTC to Ivan Hash: 0000003eeb3743ee42020e4a15262fd110a72823d804ce8e49643b5fd9d1062b PoW: true
Prev. hash: 0000003eeb3743ee42020e4a15262fd110a72823d804ce8e49643b5fd9d1062b Data: Send 2 more BTC to Ivan Hash: 000000e42afddf57a3daa11b43b2e0923f23e894f96d1f24bfd9b8d2d494c57a PoW: true 从下图可以看出,这次我们产生三个块花费了一分多钟,比没有工作量证明之前慢了很多(也就是成本高了很多): 总结我们的区块链离真正的区块链又进了一步:现在需要经过一些困难的工作才能加入新的块,因此挖矿就有可能了。但是,它还缺少一些至关重要的特性:区块链数据库并不是持久化的,没有钱包,地址,交易,也没有共识机制。不过,所有的这些,我们都会在接下来的文章中实现,现在,愉快地挖矿吧!
链接: 本文源代码:part_2 原文: Building Blockchain in Go. Part 2: Proof-of-Work
|