A股上市公司传智教育(股票代码 003032)旗下技术交流社区北京昌平校区

 找回密码
 加入黑马

QQ登录

只需一步,快速开始

© 长沙黑马周润发 初级黑马   /  2018-7-27 15:00  /  1219 人查看  /  0 人回复  /   0 人收藏 转载请遵从CC协议 禁止商业使用本文

一位陌生美女主动过来和你搭讪,并要求和你一起玩个游戏。美女提议:“让我们各自亮出硬币的一面,或正或反。如果我们都是正面,那么我给你3元,如果我们都是反面,我给你1元,剩下的情况你给我2元就可以了。”听起来不错的提议,也很公平。如果我是男性,无论如何我是要玩的,不过经济学考虑就是另外一回事了,这个游戏真的够公平吗?
假设我们出正面的概率是x,反面的概率是1-x。为了使利益最大化,应该在对手出正面或反面的时候我们的收益都相等,不然对手总是可以改变正反面出现的概率让我们的总收入减少,由此列出方程就是3x+(-2)*(1-x)=(-2)*x+1*(1-x)。

这个方程通俗的说就是在对手一直出正面你得到的利益,和你对手一直出反面得到利益是一样的且最大。解方程得x=3/8,也就是说平均每八次出示3次正面,5次反面是我们的最优策略。而将x=3/8代入到收益表达式3*x+(-2)*(1-x)中就可得到每次的期望收入,计算结果是-1/8元。

同样,设美女出正面的概率是y,反面的概率是1-y,列方程-3y+2(1-y)=2y+(-1)*(1-y)。

解得y也等于3/8,而美女每次的期望收益则是2(1-y)-3y=1/8元。这告诉我们,在双方都采取最优策略的情况下,平均每次美女赢1/8元。其实只要美女采取了(3/8,5/8)这个方案,不论你再采用什么方案,都是不能改变局面的。如果全部出正面,每次的期望收益是(3+3+3-2-2-2-2-2)/8=-1/8元。

如果全部出反面,每次的期望收益也是(-2-2-2+1+1+1+1+1)/8=-1/8元。而任何策略无非只是上面两种策略的线性组合,所以期望还是-1/8元。但是当你也采用最佳策略时,至少可以保证自己输得最少。否则,你肯定就会被美女采用的策略针对,从而赔掉更多。看起来这个博弈模型似乎没有什么用处,但是其实这可能牵涉了金融市场定价中最重要的一个模型了。定价权重模型了。

0 个回复

您需要登录后才可以回帖 登录 | 加入黑马