本帖最后由 海纳百川! 于 2018-10-8 20:09 编辑
求一个整数,它加上100后是一个完全平方数,再加上168又是一个完全平方数,请问该数是多少?
程序分析:
假设该数为 x。
1、则:x + 100 = n2, x + 100 + 168 = m2
2、计算等式:m2 - n2 = (m + n)(m - n) = 168
3、设置: m + n = i,m - n = j,i * j =168,i 和 j 至少一个是偶数
4、可得: m = (i + j) / 2, n = (i - j) / 2,i 和 j 要么都是偶数,要么都是奇数。
5、从 3 和 4 推导可知道,i 与 j 均是大于等于 2 的偶数。
6、由于 i * j = 168, j>=2,则 1 < i < 168 / 2 + 1。
7、接下来将 i 的所有数字循环计算即可。
哈哈! 以前解要设什么x ,y 的方程解,现在Python 就是 这么强大 ! for i in range(1,85):
if 168 % i == 0:
j = 168 / i;
if i > j and (i + j) % 2 == 0 and (i - j) % 2 == 0 :
m = (i + j) / 2
n = (i - j) / 2
x = n * n - 100
print(x)
几步就OK ,不过这个数学思想还是要有的,毕竟机器只会执行 !
|