A股上市公司传智教育(股票代码 003032)旗下技术交流社区北京昌平校区

 找回密码
 加入黑马

QQ登录

只需一步,快速开始

这个例子说明在判别分析里使用缩水(shrinkage)的方法,可以提高分类的准确率。所谓“缩水”,是指减少预测的特征。我们使用的数据集是模拟数据,你也可以在真实数据集上验证缩水判别分析的分类效果。

实例详解

首先,导入必需的库。

from __future__ import division

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import make_blobs
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

准备工作

n_train = 20  # samples for training
n_test = 200  # samples for testing
n_averages = 50  # how often to repeat classification
n_features_max = 75  # maximum number of features
step = 4  # step size for the calculation

函数generate_data()

函数generate_data()用来生成模拟数据集。它有两个参数n_samples, n_features, 分别指定样本数和特征数。该函数返回一个形如(n_samples, n_features)的数组和一个目标类标签数组。

def generate_data(n_samples, n_features):
    """Generate random blob-ish data with noisy features.

    This returns an array of input data with shape `(n_samples, n_features)`
    and an array of `n_samples` target labels.

    Only one feature contains discriminative information, the other features
    contain only noise.
    """
    X, y = make_blobs(n_samples=n_samples, n_features=1, centers=[[-2], [2]])

    # add non-discriminative features
    if n_features > 1:
        X = np.hstack([X, np.random.randn(n_samples, n_features - 1)])
    return X, y


普通判别分析 v.s. 缩水判别分析

scikit-learn的线性判别分析函数LinearDiscriminantAnalysis使用一个线性边界的分类器,它使用贝叶斯规则的类条件密度拟合数据。模型假设所有的类有相同的协方差阵,对每一个类拟合一个高斯密度。LinearDiscriminantAnalysis的主要参数solver是一个字符串,指定使用的解形式。在这里,它取lsqr, 表示最小二乘解,可以与缩水法结合。参数shrinkage默认取值None, 表示没有缩水。在这里,它取auto, 表示使用Ledoit-Wolf(估计缩水的协方差阵)自动缩水。

acc_clf1, acc_clf2 = [], []
n_features_range = range(1, n_features_max + 1, step)
for n_features in n_features_range:
    score_clf1, score_clf2 = 0, 0
    for _ in range(n_averages):
        X, y = generate_data(n_train, n_features)

        clf1 = LinearDiscriminantAnalysis(solver='lsqr', shrinkage='auto').fit(X, y)
        clf2 = LinearDiscriminantAnalysis(solver='lsqr', shrinkage=None).fit(X, y)

        X, y = generate_data(n_test, n_features)
        score_clf1 += clf1.score(X, y)
        score_clf2 += clf2.score(X, y)

    acc_clf1.append(score_clf1 / n_averages)
    acc_clf2.append(score_clf2 / n_averages)

features_samples_ratio = np.array(n_features_range) / n_train

可视化分类效果

plt.plot(features_samples_ratio, acc_clf1, linewidth=2,
         label="Linear Discriminant Analysis with shrinkage", color='navy')
plt.plot(features_samples_ratio, acc_clf2, linewidth=2,
         label="Linear Discriminant Analysis", color='gold')

plt.xlabel('n_features / n_samples')
plt.ylabel('Classification accuracy')

plt.legend(loc=1, prop={'size': 12})
plt.suptitle('Linear Discriminant Analysis vs. \
shrinkage Linear Discriminant Analysis (1 discriminative feature)')
plt.show()

---------------------
【转载】
作者:Goodsta
原文:https://blog.csdn.net/wong2016/article/details/83897057


3 个回复

倒序浏览
回复 使用道具 举报
回复 使用道具 举报
回复 使用道具 举报
您需要登录后才可以回帖 登录 | 加入黑马