1、TensorFlow图像处理函数
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
image_raw_data = tf.gfile.FastGFile("../../datasets/cat.jpg",'r').read()
with tf.Session() as sess:
img_data = tf.image.decode_jpeg(image_raw_data)
# 输出解码之后的三维矩阵。
print img_data.eval()
img_data.set_shape([1797, 2673, 3])
print img_data.get_shape()
with tf.Session() as sess:
plt.imshow(img_data.eval())
plt.show()
结果:
2、调整图像尺寸
with tf.Session() as sess:
resized = tf.image.resize_images(img_data, [300, 300], method=0)
# TensorFlow的函数处理图片后存储的数据是float32格式的,需要转换成uint8才能正确打印图片。
print "Digital type: ", resized.dtype
cat = np.asarray(resized.eval(), dtype='uint8')
# tf.image.convert_image_dtype(rgb_image, tf.float32)
plt.imshow(cat)
plt.show()
其中method参数分别为:0、1、2 、3,代表双线性插值法、最近邻居法、双三次插值法、面积插值法
结果展示:
3、图片裁剪和填充
with tf.Session() as sess:
croped = tf.image.resize_image_with_crop_or_pad(img_data, 1000, 1000)
padded = tf.image.resize_image_with_crop_or_pad(img_data, 3000, 3000)
plt.imshow(croped.eval())
plt.show()
plt.imshow(padded.eval())
plt.show()
结果展示:
4、截取中间50%的图片
with tf.Session() as sess:
central_cropped = tf.image.central_crop(img_data, 0.5)
plt.imshow(central_cropped.eval())
plt.show()
5、翻转图片
with tf.Session() as sess:
# 上下翻转
#flipped1 = tf.image.flip_up_down(img_data)
# 左右翻转
#flipped2 = tf.image.flip_left_right(img_data)
#对角线翻转
transposed = tf.image.transpose_image(img_data)
plt.imshow(transposed.eval())
plt.show()
# 以一定概率上下翻转图片。
#flipped = tf.image.random_flip_up_down(img_data)
# 以一定概率左右翻转图片。
#flipped = tf.image.random_flip_left_right(img_data)
6、图像色彩调整
with tf.Session() as sess:
# 将图片的亮度-0.5。
#adjusted = tf.image.adjust_brightness(img_data, -0.5)
# 将图片的亮度-0.5
#adjusted = tf.image.adjust_brightness(img_data, 0.5)
# 在[-max_delta, max_delta)的范围随机调整图片的亮度。
adjusted = tf.image.random_brightness(img_data, max_delta=0.5)
# 将图片的对比度-5
#adjusted = tf.image.adjust_contrast(img_data, -5)
# 将图片的对比度+5
#adjusted = tf.image.adjust_contrast(img_data, 5)
# 在[lower, upper]的范围随机调整图的对比度。
#adjusted = tf.image.random_contrast(img_data, lower, upper)
plt.imshow(adjusted.eval())
plt.show()
结果展示:
7、图像色彩调整
with tf.Session() as sess:
adjusted = tf.image.adjust_hue(img_data, 0.1)
#adjusted = tf.image.adjust_hue(img_data, 0.3)
#adjusted = tf.image.adjust_hue(img_data, 0.6)
#adjusted = tf.image.adjust_hue(img_data, 0.9)
# 在[-max_delta, max_delta]的范围随机调整图片的色相。max_delta的取值在[0, 0.5]之间。
#adjusted = tf.image.random_hue(image, max_delta)
# 将图片的饱和度-5。
#adjusted = tf.image.adjust_saturation(img_data, -5)
# 将图片的饱和度+5。
#adjusted = tf.image.adjust_saturation(img_data, 5)
# 在[lower, upper]的范围随机调整图的饱和度。
#adjusted = tf.image.random_saturation(img_data, lower, upper)
# 将代表一张图片的三维矩阵中的数字均值变为0,方差变为1。
#adjusted = tf.image.per_image_whitening(img_data)
plt.imshow(adjusted.eval())
plt.show()
结果:
8、添加标注框并裁剪
with tf.Session() as sess:
boxes = tf.constant([[[0.05, 0.05, 0.9, 0.7], [0.35, 0.47, 0.5, 0.56]]])
begin, size, bbox_for_draw = tf.image.sample_distorted_bounding_box(
tf.shape(img_data), bounding_boxes=boxes)
batched = tf.expand_dims(tf.image.convert_image_dtype(img_data, tf.float32), 0)
image_with_box = tf.image.draw_bounding_boxes(batched, bbox_for_draw)
distorted_image = tf.slice(img_data, begin, size)
plt.imshow(distorted_image.eval())
plt.show()
---------------------
【转载】仅作分享,侵删
作者:经年不往
原文:https://blog.csdn.net/mago2015/article/details/82563856
|
|