TreeMap的实现是红黑树算法的实现 红黑树 又称 红-黑二叉树,它首先是一颗二叉树,它具有二叉树所有的特性。 同时红黑树更是一颗自平衡的排序二叉树。 一颗基本的二叉树中的任何节点的值大于它的左子节点,且小于它的右子节点。 按照这个基本性质使得树的检索效率大大提高。 在生成二叉树的过程是非常容易失衡的,最坏的情况就是一边倒(只有右/左子树),这样势必会导致二叉树的检索效率大大降低(O(n)),所以为了维持二叉树的平衡,大牛们提出了各种实现的算法,如:AVL,SBT,伸展树,TREAP ,红黑树等等。
平衡二叉树 必须具备如下特性:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。也就是说该二叉树的任何一个子节点,其左右子树的高度都相近。
红黑树 节点是红色或者黑色的平衡二叉树,它通过颜色的约束来维持着二叉树的平衡。 对于一棵有效的红黑树二叉树而言我们必须增加如下规则: 1、每个节点都只能是红色或者黑色 2、根节点是黑色 3、每个叶节点(NIL节点,空节点)是黑色的。 4、如果一个节点是红的,则它两个子节点都是黑的。也就是说在一条路径上不能出现相邻的两个红色结点。 5、从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。 TreeMap put()方法实现分析 在TreeMap的put()的实现方法中主要分为两个步骤, 第一:构建排序二叉树, 第二:平衡二叉树。 对于排序二叉树的创建,其添加节点的过程如下: 1、以根节点为初始节点进行检索。 2、与当前节点进行比对,若新增节点值较大,则以当前节点的右子节点作为新的当前节点。否则以当前节点的左子节点作为新的当前节点。 3、循环递归2步骤知道检索出合适的叶子节点为止。 4、将新增节点与3步骤中找到的节点进行比对,如果新增节点较大,则添加为右子节点;否则添加为左子节点。
[Java] 纯文本查看 复制代码 [/size][/font][/color][/align][align=left][color=rgb(0, 0, 0)][font=宋体][size=12pt]public V put(K key, V value) {
//用t表示二叉树的当前节点
Entry<K,V> t = root;
//t为null表示一个空树,即TreeMap中没有任何元素,直接插入
if (t == null) {
//将新的key-value键值对创建为一个Entry节点,并将该节点赋予给root
root = new Entry<>(key, value, null);
//容器的size = 1,表示TreeMap集合中存在一个元素
size = 1;
//修改次数 + 1
modCount++;
return null;
}
int cmp; //cmp表示key排序的返回结果
Entry<K,V> parent; //父节点
// split comparator and comparable paths
Comparator<? super K> cpr = comparator; //指定的排序算法
//如果cpr不为空,则采用既定的排序算法进行创建TreeMap集合
if (cpr != null) {
do {
parent = t; //parent指向上次循环后的t
//比较新增节点的key和当前节点key的大小
cmp = cpr.compare(key, t.key);
//cmp返回值小于0,表示新增节点的key小于当前节点的key,则以当前节点的左子节点作为新的当前节点
if (cmp < 0)
t = t.left;
//cmp返回值大于0,表示新增节点的key大于当前节点的key,则以当前节点的右子节点作为新的当前节点
else if (cmp > 0)
t = t.right;
//cmp返回值等于0,表示两个key值相等,则新值覆盖旧值,并返回新值
else
return t.setValue(value);
} while (t != null);
}
//如果cpr为空,则采用默认的排序算法进行创建TreeMap集合
else {
if (key == null) //key值为空抛出异常
throw new NullPointerException();
/* 下面处理过程和上面一样 */
Comparable<? super K> k = (Comparable<? super K>) key;
do {
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
//将新增节点当做parent的子节点
Entry<K,V> e = new Entry<>(key, value, parent);
//如果新增节点的key小于parent的key,则当做左子节点
if (cmp < 0)
parent.left = e;
//如果新增节点的key大于parent的key,则当做右子节点
else
parent.right = e;[/size][/font][/color][/align][align=left][color=rgb(0, 0, 0)][font=宋体][size=12pt]
/*
* 上面已经完成了排序二叉树的的构建,将新增节点插入该树中的合适位置
* 下面fixAfterInsertion()方法就是对这棵树进行调整、平衡,具体过程参考上面的五种情况
*/
fixAfterInsertion(e);
//TreeMap元素数量 + 1
size++;
//TreeMap容器修改次数 + 1
modCount++;
return null;
}[/size][/font][/color][/align][align=left][color=rgb(0, 0, 0)][font=宋体][size=12pt] 上面代码中do{}代码块是实现排序二叉树的核心算法,通过该算法我们可以确认新增节点在该树的正确位置。找到正确位置后将插入即可
|