A股上市公司传智教育(股票代码 003032)旗下技术交流社区北京昌平校区

 找回密码
 加入黑马

QQ登录

只需一步,快速开始

Python数据预处理—归一化,标准化,正则化
关于数据预处理的几个概念
归一化 (Normalization):
属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现。
常用的最小最大规范化方法(x-min(x))/(max(x)-min(x))
除了上述介绍的方法之外,另一种常用的方法是将属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现。
使用这种方法的目的包括:
1、对于方差非常小的属性可以增强其稳定性。
2、维持稀疏矩阵中为0的条目


>>> X_train = np.array([[ 1., -1., 2.],... [ 2., 0., 0.],... [ 0., 1., -1.]])...>>> min_max_scaler = preprocessing.MinMaxScaler()>>> X_train_minmax = min_max_scaler.fit_transform(X_train)>>> X_train_minmaxarray([[ 0.5 , 0. , 1. ],[ 1. , 0.5 , 0.33333333],[ 0. , 1. , 0. ]]) >>> #将相同的缩放应用到测试集数据中>>> X_test = np.array([[ -3., -1., 4.]])>>> X_test_minmax = min_max_scaler.transform(X_test)>>> X_test_minmaxarray([[-1.5 , 0. , 1.66666667]])  >>> #缩放因子等属性>>> min_max_scaler.scale_array([ 0.5 , 0.5 , 0.33...]) >>> min_max_scaler.min_array([ 0. , 0.5 , 0.33...])

当然,在构造类对象的时候也可以直接指定最大最小值的范围:feature_range=(min, max),此时应用的公式变为:

X_std=(X-X.min(axis=0))/(X.max(axis=0)-X.min(axis=0))

X_scaled=X_std/(max-min)+min








标准化(Standardization):将数据按比例缩放,使之落入一个小的特定区间内,标准化后的数据可正可负,一般绝对值不会太大。
计算时对每个属性/每列分别进行
将数据按期属性(按列进行)减去其均值,并处以其方差。得到的结果是,对于每个属性/每列来说所有数据都聚集在0附近,方差为1。
使用z-score方法规范化(x-mean(x))/std(x)
这个在matlab中有特定的方程
使用sklearn.preprocessing.scale()函数,可以直接将给定数据进行标准化:

>>> from sklearn import preprocessing>>> import numpy as np>>> X = np.array([[ 1., -1.,  2.],...               [ 2.,  0.,  0.],...               [ 0.,  1., -1.]])>>> X_scaled = preprocessing.scale(X) >>> X_scaled                                          array([[ 0.  ..., -1.22...,  1.33...],       [ 1.22...,  0.  ..., -0.26...],       [-1.22...,  1.22..., -1.06...]]) >>>#处理后数据的均值和方差>>> X_scaled.mean(axis=0)array([ 0.,  0.,  0.]) >>> X_scaled.std(axis=0)array([ 1.,  1.,  1.])

  


使用sklearn.preprocessing.StandardScaler类,使用该类的好处在于可以保存训练集中的参数(均值、方差)直接使用其对象转换测试集数据:


>>> scaler = preprocessing.StandardScaler().fit(X)>>> scalerStandardScaler(copy=True, with_mean=True, with_std=True) >>> scaler.mean_array([ 1. ..., 0. ..., 0.33...]) >>> scaler.std_array([ 0.81..., 0.81..., 1.24...]) >>> scaler.transform(X)array([[ 0. ..., -1.22..., 1.33...],[ 1.22..., 0. ..., -0.26...],[-1.22..., 1.22..., -1.06...]])  >>>#可以直接使用训练集对测试集数据进行转换>>> scaler.transform([[-1., 1., 0.]])array([[-2.44..., 1.22..., -0.26...]])





正则化:正则化的过程是将每个样本缩放到单位范数(每个样本的范数为1),如果后面要使用如二次型(点积)或者其它核方法计算两个样本之间的相似性这个方法会很有用。

Normalization主要思想是对每个样本计算其p-范数,然后对该样本中每个元素除以该范数,这样处理的结果是使得每个处理后样本的p-范数(l1-norm,l2-norm)等于1。

             p-范数的计算公式:||X||p=(|x1|^p+|x2|^p+...+|xn|^p)^1/p
该方法主要应用于文本分类和聚类中。例如,对于两个TF-IDF向量的l2-norm进行点积,就可以得到这两个向量的余弦相似性。

1、可以使用preprocessing.normalize()函数对指定数据进行转换:


>>> X = [[ 1., -1., 2.],... [ 2., 0., 0.],... [ 0., 1., -1.]]>>> X_normalized = preprocessing.normalize(X, norm='l2') >>> X_normalizedarray([[ 0.40..., -0.40..., 0.81...],[ 1. ..., 0. ..., 0. ...],[ 0. ..., 0.70..., -0.70...]])




2、可以使用processing.Normalizer()类实现对训练集和测试集的拟合和转换:


>>> normalizer = preprocessing.Normalizer().fit(X) # fit does nothing>>> normalizerNormalizer(copy=True, norm='l2') >>>>>> normalizer.transform(X)array([[ 0.40..., -0.40..., 0.81...],[ 1. ..., 0. ..., 0. ...],[ 0. ..., 0.70..., -0.70...]]) >>> normalizer.transform([[-1., 1., 0.]])array([[-0.70..., 0.70..., 0. ...]])







1 个回复

倒序浏览
回复 使用道具 举报
您需要登录后才可以回帖 登录 | 加入黑马