三、项目
原始数据youtube在此下载:https://pan.baidu.com/s/1we1KPA2IIEAGIJczyr2dMQ
3.1、数据结构
3.1.1、视频表
这里写图片描述
这里写图片描述
3.1.2、用户表
这里写图片描述
3.2 原始数据存放地
HDFS 目录:
视频数据集:/youtube/video/2008
用户数据集:/youtube/users/2008
3.3、技术选型
Hadoop 2.7.2
Hive 1.2.2
Mysql 5.6
3.3.1、数据清洗
Hadoop MapReduce
3.3.2、数据分析
MapReduce or Hive
3.4、ETL 原始数据
通过观察原始数据形式,可以发现,视频可以有多个所属分类,每个所属分类用&符号分割,
且分割的两边有空格字符,同时相关视频也是可以有多个元素,多个相关视频又用“\t”进
行分割。为了分析数据时方便对存在多个子元素的数据进行操作,我们首先进行数据重组清
洗操作。即:将所有的类别用“&”分割,同时去掉两边空格,多个相关视频 id 也使用“&”
进行分割。
该项目的 pom.xml 文件:
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.z</groupId>
<artifactId>youtube</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging>
<name>youtube</name>
<url>http://maven.apache.org</url>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<repositories>
<repository>
<id>centor</id>
<url>http://central.maven.org/maven2/</url>
</repository>
</repositories>
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId> <artifactId>hadoop-yarn-server-resourcemanager</artifactId> <version>2.7.2</version>
</dependency>
</dependencies>
</project>
3.6.1、ETL 之 ETLUtil
package com.z.youtube.util;
public class ETLUtils {
/**
* 1、过滤不合法数据
* 2、去掉&符号左右两边的空格
* 3、\t 换成&符号
* @param ori
* @return
*/
public static String getETLString(String ori){
String[] splits = ori.split("\t");
//1、过滤不合法数据
if(splits.length < 9) return null;
//2、去掉&符号左右两边的空格
splits[3] = splits[3].replaceAll(" ", "");
StringBuilder sb = new StringBuilder();
//3、\t 换成&符号
for(int i = 0; i < splits.length; i++){
sb.append(splits);
if(i < 9){
if(i != splits.length - 1){
sb.append("\t");
}
}else{
if(i != splits.length - 1){
sb.append("&");
}
}
}
return sb.toString();
}
}3.6.2、ETL 之 Mapper
package com.z.youtube.mr.etl;
import java.io.IOException;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import com.z.youtube.util.ETLUtil;
public class VideoETLMapper extends Mapper<Object, Text, NullWritable, Text>{
Text text = new Text();
@Override
protected void map(Object key, Text value, Context context) throws IOException, InterruptedException {
String etlString = ETLUtil.oriString2ETLString(value.toString());
if(StringUtils.isBlank(etlString)) return;
text.set(etlString);
context.write(NullWritable.get(), text);
}
}3.6.3、ETL 之 Runner
package com.z.youtube.mr.etl;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class VideoETLRunner implements Tool {
private Configuration conf = null;
@Override
public void setConf(Configuration conf) {
this.conf = conf;
}
@Override
public Configuration getConf() {
return this.conf;
}
@Override
public int run(String[] args) throws Exception {
conf = this.getConf();
conf.set("inpath", args[0]);
conf.set("outpath", args[1]);
Job job = Job.getInstance(conf, "youtube-video-etl");
job.setJarByClass(VideoETLRunner.class);
job.setMapperClass(VideoETLMapper.class);
job.setMapOutputKeyClass(NullWritable.class);
job.setMapOutputValueClass(Text.class);
job.setNumReduceTasks(0);
this.initJobInputPath(job);
this.initJobOutputPath(job);
return job.waitForCompletion(true) ? 0 : 1;
}
Configuration conf = job.getConfiguration();
String outPathString = conf.get("outpath");
FileSystem fs = FileSystem.get(conf);
Path outPath = new Path(outPathString);
if(fs.exists(outPath)){
fs.delete(outPath, true);
}
FileOutputFormat.setOutputPath(job, outPath);
}
private void initJobInputPath(Job job) throws IOException {
Configuration conf = job.getConfiguration();
String inPathString = conf.get("inpath");
FileSystem fs = FileSystem.get(conf);
Path inPath = new Path(inPathString);
if(fs.exists(inPath)){
FileInputFormat.addInputPath(job, inPath);
}else{
throw new RuntimeException("HDFS 中该文件目录不存在:" + inPathString);
}
}
public static void main(String[] args) {
try {
int resultCode = ToolRunner.run(new VideoETLRunner(), args);
if(resultCode == 0){
System.out.println("Success!");
}else{
System.out.println("Fail!");
}
System.exit(resultCode);
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
}3.6.4、执行 ETL
赠送Maven编译打包命令提示:-P local clean package
bin/yarn jar ~/softwares/jars/youtube-0.0.1-SNAPSHOT.jar \
com.z.youtube.etl.ETLYoutubeVideosRunner \
/youtube/video/2008/0222 \
/youtube/output/video/2008/02223.5、准备工作
3.5.1、创建表
创建表:youtube_ori,youtube_user_ori,
创建表:youtube_orc,youtube_user_orc
youtube_ori:
create table youtube_ori(
videoId string,
uploader string,
age int,
category array<string>,
length int,
views int,
rate float,
ratings int,
comments int,
relatedId array<string>)
row format delimited
fields terminated by "\t"
collection items terminated by "&"
stored as textfile;
youtube_user_ori:
create table youtube_user_ori(
uploader string,
videos int,
friends int)
clustered by (uploader) into 24 buckets
row format delimited
fields terminated by "\t"
stored as textfile;
然后把原始数据插入到 orc 表中
youtube_orc:
create table youtube_orc(
videoId string,
uploader string,
age int,
category array<string>,
length int,
views int,
rate float,
ratings int,
comments int,
relatedId array<string>)
clustered by (uploader) into 8 buckets
row format delimited fields terminated by "\t"
collection items terminated by "&"
stored as orc;
youtube_user_orc:
create table youtube_user_orc(
uploader string,
videos int,
friends int)
clustered by (uploader) into 24 buckets
row format delimited
fields terminated by "\t"
stored as orc;
3.5.2、导入 ETL 后的数据
youtube_ori:
load data inpath "/youtube/output/video/2008/0222" into table youtube_ori;
youtube_user_ori:
load data inpath "/youtube/user/2008/0903" into table youtube_user_ori;
3.5.3、向 ORC 表插入数据
youtube_orc:
insert into table youtube_orc select * from youtube_ori;
youtube_user_orc:
insert into table youtube_user_orc select * from youtube_user_ori;
3.6、业务分析
3.6.1、统计视频观看数 Top10
思路:
1) 使用 order by 按照 views 字段做一个全局排序即可,同时我们设置只显示前 10 条。
最终代码:
select
videoId,
uploader,
age,
category,
length,
views,
rate,
ratings,
comments
from
youtube_orc
order by
views
desc limit
10;
3.6.2、统计视频类别热度 Top10
思路:
1) 即统计每个类别有多少个视频,显示出包含视频最多的前 10 个类别。
2) 我们需要按照类别 group by 聚合,然后 count 组内的 videoId 个数即可。
3) 因为当前表结构为:一个视频对应一个或多个类别。所以如果要 group by 类别,需要先将类别进行列转行(展开),然后再进行 count 即可。
4) 最后按照热度排序,显示前 10 条。
最终代码:
select
category_name as category,
count(t1.videoId) as hot
from (
select
videoId,
category_name
from
youtube_orc lateral view explode(category) t_catetory as category_name) t1
group by
t1.category_name
order by
hot
desc limit
10;3.6.3、统计出视频观看数最高的 20 个视频的所属类别以及类别包含
这 Top20 视频的个数
思路:
1) 先找到观看数最高的 20 个视频所属条目的所有信息,降序排列
2) 把这 20 条信息中的 category 分裂出来(列转行)
3) 最后查询视频分类名称和该分类下有多少个 Top20 的视频
最终代码:
select
category_name as category,
count(t2.videoId) as hot_with_views
from (
select
videoId,
category_name
from (
select
*
from
youtube_orc
order by
views
desc limit
20) t1 lateral view explode(category) t_catetory as category_name) t2
group by
category_name
order by
hot_with_views
desc;
3.6.4、统计视频观看数 Top50 所关联视频的所属类别的热度排名
思路:
1) 查询出观看数最多的前 50 个视频的所有信息(当然包含了每个视频对应的关联视频),记为临时表 t1
t1:观看数前 50 的视频
select
*
from
youtube_orc
order by
views
desc limit
50;
2) 将找到的 50 条视频信息的相关视频 relatedId 列转行,记为临时表 t2
t2:将相关视频的 id 进行列转行操作
select
explode(relatedId) as videoId
from
t1;
3) 将相关视频的 id 和 youtube_orc 表进行 inner join 操作
t5:得到两列数据,一列是 category,一列是之前查询出来的相关视频 id
(select
distinct(t2.videoId),
t3.category
from
t2
inner join
youtube_orc t3 on t2.videoId = t3.videoId) t4 lateral view explode(category) t_catetory as category_name;
4) 按照视频类别进行分组,统计每组视频个数,然后排行
最终代码:
select
category_name as category,
count(t5.videoId) as hot
from (
select
videoId,
category_name
from (
select
distinct(t2.videoId),
t3.category
from (
select
explode(relatedId) as videoId
from (
select
*
from
youtube_orc
order by
views
desc limit
50) t1) t2
inner join
youtube_orc t3 on t2.videoId = t3.videoId) t4 lateral view explode(category)
t_catetory as category_name) t5
group by
category_name
order by
hot
desc;
3.6.5、统计每个类别中的视频热度 Top10,以 Music 为例
思路:
1) 要想统计 Music 类别中的视频热度 Top10,需要先找到 Music 类别,那么就需要将 category
展开,所以可以创建一张表用于存放 categoryId 展开的数据。
2) 向 category 展开的表中插入数据。
3) 统计对应类别(Music)中的视频热度。
最终代码:
创建表类别表:
create table youtube_category(
videoId string,
uploader string,
age int,
categoryId string,
length int,
views int,
rate float,
ratings int,
comments int,
relatedId array<string>)
row format delimited
fields terminated by "\t"
collection items terminated by "&"
stored as orc;
向类别表中插入数据:
insert into table youtube_category
select
videoId,
uploader,
age,
categoryId,
length,
views,
rate,
ratings,
comments,
relatedId
from
youtube_orc lateral view explode(category) catetory as categoryId;
统计 Music 类别的 Top10(也可以统计其他)
select
videoId,
views
from
youtube_category
where
categoryId = "Music"
order by
views
desc limit
10;
3.6.6、统计每个类别中视频流量 Top10,以 Music 为例
思路:
1) 创建视频类别展开表(categoryId 列转行后的表)
2) 按照 ratings 排序即可
最终代码:
select
videoId,
views,
ratings
from
youtube_category
where
categoryId = "Music"
order by
ratings
desc limit
10;
3.6.7、统计上传视频最多的用户 Top10 以及他们上传的观看次数在
前 20 的视频
思路:
1) 先找到上传视频最多的 10 个用户的用户信息
select
*
from
youtube_user_orc
order by
videos
desc limit
10;
2) 通过 uploader 字段与 youtube_orc 表进行 join,得到的信息按照 views 观看次数进行排序即可。
最终代码:
select
t2.videoId,
t2.views,
t2.ratings,
t1.videos,
t1.friends
from (
select
*
from
youtube_user_orc
order by
videos desc
limit
10) t1
join
youtube_orc t2
on
t1.uploader = t2.uploader
order by
views desc
limit
20;
不过好像原始数据中有点问题,上传视频最多的top10用户的视频没有排在观看次数前20的。。。
3.6.8、统计每个类别视频观看数 Top10
思路:
1) 先得到 categoryId 展开的表数据
2) 子查询按照 categoryId 进行分区,然后分区内排序,并生成递增数字,该递增数字这一列起名为 rank 列
3) 通过子查询产生的临时表,查询 rank 值小于等于 10 的数据行即可。
最终代码:
select
t1.*
from (
select
videoId,
categoryId,
views,
row_number() over(partition by categoryId order by views desc) rank from
youtube_category) t1
where
rank <= 10;
|
|