A股上市公司传智教育(股票代码 003032)旗下技术交流社区北京昌平校区

 找回密码
 加入黑马

QQ登录

只需一步,快速开始

模型评估
import pickle
from matplotlib import pyplot as plt
from sklearn.externals import joblib
from sklearn.metrics import accuracy_score, recall_score, f1_score, roc_auc_score, roc_curve

path = "E:/mypython/Machine_learning_GoGoGo/"
"""=====================================================================================================================
1 读取特征
"""
print("0 读取特征")
f = open(path + 'feature/feature_V1.pkl', 'rb')
train, test, y_train,y_test= pickle.load(f)
f.close()

"""=====================================================================================================================
2 读取模型
"""
print("1 读取模型")
SVM_linear = joblib.load( path + "model/SVM_linear.pkl")

SVM_rbf = joblib.load( path + "model/SVM_rbf.pkl")
SVM_sigmoid = joblib.load( path + "model/SVM_sigmoid.pkl")
lg_120 = joblib.load( path + "model/lg_120.pkl")
DT = joblib.load( path + "model/DT.pkl")
xgb_sklearn = joblib.load( path + "model/xgb_sklearn.pkl")
lgb_sklearn = joblib.load( path + "model/lgb_sklearn.pkl")
xgb = joblib.load( path + "model/xgb.pkl")
lgb = joblib.load( path + "model/lgb.pkl")




"""=====================================================================================================================
3 模型评估
"""

def model_evalua(clf, X_train, X_test, y_train, y_test,name):
    y_train_pred = clf.predict(X_train)
    y_test_pred = clf.predict(X_test)
    y_train_pred_proba = clf.predict_proba(X_train)[:, 1]
    y_test_pred_proba = clf.predict_proba(X_test)[:, 1]
    """【AUC Score】"""
    print(name+'_AUC Score')
    print(name+"_Train_AUC Score :{:.4f}".format(roc_auc_score(y_train, y_train_pred)))
    print(name+"_Test_AUC Score :{:.4f}".format(roc_auc_score(y_test, y_test_pred)))

    """【准确性】"""
    print(name+'_准确性:')
    print(name+'_Train_准确性:{:.4f}'.format(accuracy_score(y_train, y_train_pred)))
    print(name+'_Test_准确性:{:.4f}'.format(accuracy_score(y_test, y_test_pred)))

    """【召回率】"""
    print(name+'_召回率:')
    print(name+'_Train_召回率:{:.4f}'.format(recall_score(y_train, y_train_pred)))
    print(name+'_Test_召回率:{:.4f}'.format(recall_score(y_test, y_test_pred)))

    """【f1_score】"""
    print(name+'_f1_score:')
    print(name+'_Train_f1_score:{:.4f}'.format(f1_score(y_train, y_train_pred)))
    print(name+'_Test_f1_score:{:.4f}'.format(f1_score(y_test, y_test_pred)))

    #描绘 ROC 曲线
    fpr_tr, tpr_tr, _ = roc_curve(y_train, y_train_pred_proba)
    fpr_te, tpr_te, _ = roc_curve(y_test, y_test_pred_proba)
    # KS
    print(name+'_KS:')
    print(name+'_Train:{:.4f}'.format(max(abs((fpr_tr - tpr_tr)))))
    print(name+'_Test:{:.4f}'.format(max(abs((fpr_te - tpr_te)))))
    plt.plot(fpr_tr, tpr_tr, 'r-',
             label = name+"_Train:AUC: {:.3f} KS:{:.3f}".format(roc_auc_score(y_train, y_train_pred_proba),
                                                max(abs((fpr_tr - tpr_tr)))))
    plt.plot(fpr_te, tpr_te, 'g-',
             label=name+"_Test:AUC: {:.3f} KS:{:.3f}".format(roc_auc_score(y_test, y_test_pred_proba),
                                                       max(abs((fpr_tr - tpr_tr)))))
    plt.plot([0, 1], [0, 1], 'd--')
    plt.legend(loc='best')
    plt.title(name+"_ROC curse")
    plt.savefig(path +'picture/'+name+'.jpg')
    plt.show()
print('-------------------SVM_linear-------------------')
model_evalua(SVM_linear, train, test, y_train, y_test,'SVM_linear')



print('-------------------SVM_rbf-------------------:')
model_evalua(SVM_rbf, train, test, y_train, y_test,'SVM_rbf')

print('-------------------SVM_sigmoid-------------------:')
model_evalua(SVM_sigmoid, train, test, y_train, y_test,'SVM_sigmoid')

print('-------------------lg_120-------------------')
model_evalua(lg_120, train, test, y_train, y_test,'lg_120')

print('-------------------DT-------------------')
model_evalua(DT, train, test, y_train, y_test,'DT')

print('-------------------xgb_sklearn-------------------')
model_evalua(xgb_sklearn, train, test, y_train, y_test,'xgb_sklearn')

# print('-------------------xgb-------------------')
# model_evalua(xgb, train, test, y_train, y_test)

print('-------------------lgb_sklearn-------------------')
model_evalua(lgb_sklearn, train, test, y_train, y_test,'lgb_sklearn')
# print('-------------------lgb-------------------')
# model_evalua(lgb, train, test, y_train, y_test)
---------------------
作者:lgy54321
来源:CSDN
原文:https://blog.csdn.net/lgy54321/article/details/84309512
版权声明:本文为博主原创文章,转载请附上博文链接!

3 个回复

倒序浏览
回复 使用道具 举报
回复 使用道具 举报
回复 使用道具 举报
您需要登录后才可以回帖 登录 | 加入黑马